April 25, 2024
A long-duration gamma-ray burst with a peculiar origin – Nature

A long-duration gamma-ray burst with a peculiar origin – Nature

  • Woosley, S. E. & Bloom, J. S. The supernova–gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Berger, E. Short-duration gamma-ray bursts. Annu. Rev. Astron. Astrophys. 52, 43–105 (2014).

    Article 

    Google Scholar
     

  • Gehrels, N. et al. A new γ-ray burst classification scheme from GRB 060614. Nature 444, 1044–1046 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Della Valle, M. et al. An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova. Nature 444, 1050–1052 (2006).

    Article 

    Google Scholar
     

  • Zhang, B.-B. et al. A peculiarly short-duration gamma-ray burst from massive star core collapse. Nat. Astron. 5, 911–916 (2021).

    Article 

    Google Scholar
     

  • Ahumada, T. et al. Discovery and confirmation of the shortest gamma-ray burst from a collapsar. Nat. Astron. 5, 917–927 (2021).

    Article 

    Google Scholar
     

  • Zhang, B. et al. Discerning the physical origins of cosmological gamma-ray bursts based on multiple observational criteria: the cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and some short/hard GRBs. Astrophys. J. 703, 1696–1724 (2009).

    Article 

    Google Scholar
     

  • Zhang, B. et al. Making a short gamma-ray burst from a long one: implications for the nature of GRB 060614. Astrophys. J. 655, L25–L28 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Yang, B. et al. A possible macronova in the late afterglow of the long-short burst GRB 060614. Nat. Commun. 6, 7323 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Rastinejad, J. C. et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature https://doi.org/10.1038/s41586-022-05390-w (2022).

  • Yu, Y.-W., Zhang, B. & Gao, H. Bright “merger-nova” from the remnant of a neutron star binary merger: a signature of a newly born, massive, millisecond magnetar. Astrophys. J. Lett. 776, L40 (2013).

    Article 

    Google Scholar
     

  • Ai, S., Zhang, B. & Zhu, Z. Engine-fed kilonovae (mergernovae) – I. Dynamical evolution and energy injection/heating efficiencies. Mon. Not. R. Astron. Soc. 516, 2614–2628 (2022).

  • Meegan, C. et al. The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791–804 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Barthelmy, S. D. et al. The Burst Alert Telescope (BAT) on the SWIFT MIDEX mission. Space Sci. Rev. 120, 143–164 (2005).

    Article 

    Google Scholar
     

  • Xiao, S. et al. The quasi-periodically oscillating precursor of a long gamma-ray burst from a binary neutron star merger. Preprint at https://arxiv.org/abs/2205.02186 (2022).

  • Band, D. et al. BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys. J. 413, 281–292 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Amati, L. et al. Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. Astron. Astrophys. 390, 81–89 (2002).

    Article 

    Google Scholar
     

  • Li, L.-X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. 507, L59–L62 (1998).

    Article 

    Google Scholar
     

  • Metzger, B. D. et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 406, 2650–2662 (2010).

    Article 

    Google Scholar
     

  • Lü, H.-J., Zhang, B., Liang, E.-W., Zhang, B.-B. & Sakamoto, T. The ‘amplitude’ parameter of gamma-ray bursts and its implications for GRB classification. Mon. Not. R. Astron. Soc. 442, 1922–1929 (2014).

    Article 

    Google Scholar
     

  • Zhang, B. The Physics of Gamma-Ray Bursts (Cambridge Univ. Press, 2018).

  • Kluźniak, W. & Ruderman, M. The central engine of gamma-ray bursters. Astrophys. J. 505, L113–L117 (1998).

    Article 

    Google Scholar
     

  • Ruderman, M. A., Tao, L. & Kluźniak, W. A central engine for cosmic gamma-ray burst sources. Astrophys. J. 542, 243–250 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Dai, Z. G., Wang, X. Y., Wu, X. F. & Zhang, B. X-ray flares from postmerger millisecond pulsars. Science 311, 1127–1129 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Toonen, S., Perets, H. B., Igoshev, A. P., Michaely, E. & Zenati, Y. The demographics of neutron star – white dwarf mergers. Rates, delay-time distributions, and progenitors. Astron. Astrophys. 619, A53 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Buikema, A. et al. Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Phys. Rev. D 102, 062003 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bersanetti, D. et al. Advanced Virgo: status of the detector, latest results and future prospects. Universe 7, 322 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kagra Collaboration. KAGRA: 2.5 generation interferometric gravitational wave detector. Nat. Astron. 3, 35–40 (2019).

    Article 

    Google Scholar
     

  • Amaro-Seoane, P. et al. Laser interferometer space antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).

  • Luo, Z., Guo, Z., Jin, G., Wu, Y. & Hu, W. A brief analysis to Taiji: science and technology. Results Phys. 16, 102918 (2020).

    Article 

    Google Scholar
     

  • Luo, J. et al. TianQin: a space-borne gravitational wave detector. Class. Quantum Gravity 33, 035010 (2016).

    Article 

    Google Scholar
     

  • Golenetskii, S. et al. Konus-wind observation of GRB 060614. GRB Coordinates Network, Circular Service, No. 5264 (2006).

  • Amati, L. et al. On the consistency of peculiar GRBs 060218 and 060614 with the Ep,iEiso correlation. Astron. Astrophys. 463, 913–919 (2007).

    Article 

    Google Scholar
     

  • Blanchard, P. K., Berger, E. & Fong, W.-F. The offset and host light distributions of long gamma-ray bursts: a new view from HST observations of Swift bursts. Astrophys. J. 817, 144 (2016).

    Article 

    Google Scholar
     

  • von Kienlin, A. et al. The fourth Fermi-GBM gamma-ray burst catalog: a decade of data. Astrophys. J. 893, 46 (2020).

    Article 

    Google Scholar
     

  • Scargle, J. D., Norris, J. P., Jackson, B. & Chiang, J. Studies in astronomical time series analysis. VI. Bayesian block representations. Astrophys. J. 764, 167 (2013).

    Article 

    Google Scholar
     

  • Vianello, G. et al. The bright and the slow—GRBs 100724B and 160509A with high-energy cutoffs at 100 MeV. Astrophys. J. 864, 163 (2018).

    Article 

    Google Scholar
     

  • Zhang, B. B. et al. Transition from fireball to Poynting-flux-dominated outflow in the three-episode GRB 160625B. Nat. Astron. 2, 69–75 (2018).

    Article 

    Google Scholar
     

  • Burgess, J. M., Yu, H.-F., Greiner, J. & Mortlock, D. J. Awakening the BALROG: BAyesian Location Reconstruction Of GRBs. Mon. Not. R. Astron. Soc. 476, 1427–1444 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Berlato, F., Greiner, J. & Burgess, J. M. Improved Fermi-GBM GRB localizations using BALROG. Astrophys. J. 873, 60 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Feroz, F. & Hobson, M. P. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc. 384, 449–463 (2008).

    Article 

    Google Scholar
     

  • Feroz, F., Hobson, M. P. & Bridges, M. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    Article 

    Google Scholar
     

  • Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Article 

    Google Scholar
     

  • Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest algorithm. Open J. Astrophys. 2, 10 (2019).

    Article 

    Google Scholar
     

  • Arnaud, K. A. in Astronomical Data Analysis Software and Systems V, Astronomical Society of the Pacific Conference Series, Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17–20 (1996).

  • Lu, R.-J. et al. A comprehensive analysis of Fermi gamma-ray burst data. II. Ep evolution patterns and implications for the observed spectrum–luminosity relations. Astrophys. J. 756, 112 (2012).

    Article 

    Google Scholar
     

  • Li, L. et al. “Double-tracking” characteristics of the spectral evolution of GRB 131231A: synchrotron origin? Astrophys. J. 884, 109 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 

    Google Scholar
     

  • Preece, R. D. et al. The synchrotron shock model confronts a “line of death” in the BATSE gamma-ray burst data. Astrophys. J. 506, L23–L26 (1998).

    Article 

    Google Scholar
     

  • Mészáros, P. & Rees, M. J. Steep slopes and preferred breaks in gamma-ray burst spectra: the role of photospheres and Comptonization. Astrophys. J. 530, 292–298 (2000).

    Article 

    Google Scholar
     

  • Deng, W. & Zhang, B. Low energy spectral index and Ep evolution of quasi-thermal photosphere emission of gamma-ray bursts. Astrophys. J. 785, 112 (2014).

    Article 

    Google Scholar
     

  • Zhang, B. & Mészáros, P. An analysis of gamma-ray burst spectral break models. Astrophys. J. 581, 1236–1247 (2002).

    Article 

    Google Scholar
     

  • Uhm, Z. L. & Zhang, B. Fast-cooling synchrotron radiation in a decaying magnetic field and γ-ray burst emission mechanism. Nat. Phys. 10, 351–356 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, B. & Yan, H. The Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model of gamma-ray bursts. Astrophys. J. 726, 90 (2011).

    Article 

    Google Scholar
     

  • Yi, T., Liang, E., Qin, Y. & Lu, R. On the spectral lags of the short gamma-ray bursts. Mon. Not. R. Astron. Soc. 367, 1751–1756 (2006).

    Article 

    Google Scholar
     

  • Bernardini, M. G. et al. Comparing the spectral lag of short and long gamma-ray bursts and its relation with the luminosity. Mon. Not. R. Astron. Soc. 446, 1129–1138 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Norris, J. P., Marani, G. F. & Bonnell, J. T. Connection between energy-dependent lags and peak luminosity in gamma-ray bursts. Astrophys. J. 534, 248–257 (2000).

    Article 

    Google Scholar
     

  • Ukwatta, T. N. et al. Spectral lags and the lag–luminosity relation: an investigation with Swift BAT gamma-ray bursts. Astrophys. J. 711, 1073–1086 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, B.-B. et al. Unusual central engine activity in the double burst GRB 110709B. Astrophys. J. 748, 132 (2012).

    Article 

    Google Scholar
     

  • Shao, L. et al. A new measurement of the spectral lag of gamma-ray bursts and its implications for spectral evolution behaviors. Astrophys. J. 844, 126 (2017).

    Article 

    Google Scholar
     

  • Malesani, D. B. et al. GRB 211211A: NOT optical spectroscopy. GRB Coordinates Network, Circular Service, No. 31221 (2021).

  • Minaev, P. & Pozanenko, A.; GRB IKI FuN. GRB 211211A: redshift estimation and SPI-ACS/INTEGRAL detection. GRB Coordinates Network, Circular Service, No. 31230 (2021).

  • Levan, A. J. et al. GRB 211211A – Gemini K-band detection. GRB Coordinates Network, Circular Service, No. 31235 (2021).

  • Zheng, W. & Filippenko, A. V.; KAIT GRB Team. GRB 211211A: KAIT optical afterglow candidate. GRB Coordinates Network, Circular Service, No. 31203 (2021).

  • Adelman-McCarthy, J. K. et al. The Sixth Data Release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 175, 297–313 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002).

    Article 

    Google Scholar
     

  • Stalder, B. et al. Observations of the GRB afterglow ATLAS17aeu and its possible association with GW 170104. Astrophys. J. 850, 149 (2017).

    Article 

    Google Scholar
     

  • Lien, A. et al. The third Swift Burst Alert Telescope gamma-ray burst catalog. Astrophys. J. 829, 7 (2016).

    Article 

    Google Scholar
     

  • Narayana Bhat, P. et al. The third Fermi GBM gamma-ray burst catalog: the first six years. Astrophys. J. Suppl. Ser. 223, 28 (2016).

    Article 

    Google Scholar
     

  • Fermi GBM Team. GRB 211211A: Fermi GBM final real-time localization. GRB Coordinates Network, Circular Service, No. 31201 (2021).

  • Kann, D. A. et al. The afterglows of Swift-era gamma-ray bursts. II. Type I GRB versus type II GRB optical afterglows. Astrophys. J. 734, 96 (2011).

    Article 

    Google Scholar
     

  • Berger, E. A short gamma-ray burst “No-host” problem? Investigating large progenitor offsets for short GRBs with optical afterglows. Astrophys. J. 722, 1946–1961 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Hogg, D. W. et al. Counts and colours of faint galaxies in the U and R bands. Mon. Not. R. Astron. Soc. 288, 404–410 (1997).

    Article 

    Google Scholar
     

  • Beckwith, S. V. W. et al. The Hubble ultra deep field. Astron. J. 132, 1729–1755 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Fong, W. & Berger, E. The locations of short gamma-ray bursts as evidence for compact object binary progenitors. Astrophys. J. 776, 18 (2013).

    Article 

    Google Scholar
     

  • Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005).

    Article 

    Google Scholar
     

  • Beardmore, A. P., Evans, P. A., Goad, M. R. & Osborne, J. P.; Swift-XRT Team. GRB 211211A: enhanced Swift-XRT position. GRB Coordinates Network, Circular Service, No. 31205 (2021).

  • Liang, E.-W., Zhang, B.-B. & Zhang, B. A comprehensive analysis of Swift XRT data. II. Diverse physical origins of the shallow decay segment. Astrophys. J. 670, 565–583 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, D., Peng, Z.-K, Zhang, B.-B. & Dai, Z.-G. Prompt emission of gamma-ray bursts from the wind of newborn millisecond magnetars: a case study of GRB 160804A. Astrophys. J. 867, 52 (2018).

    Article 

    Google Scholar
     

  • Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Sugiura, N. Further analysts of the data by Akaike’s information criterion and the finite corrections: further analysts of the data by akaike’s. Commun. Stat. Theory Methods 7, 13–26 (1978).

    Article 
    MATH 

    Google Scholar
     

  • Zhang, B. et al. Physical processes shaping gamma-ray burst X-ray afterglow light curves: theoretical implications from the Swift X-Ray Telescope observations. Astrophys. J. 642, 354–370 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Nousek, J. A. et al. Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data. Astrophys. J. 642, 389–400 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, P. & Panaitescu, A. Afterglow emission from naked gamma-ray bursts. Astrophys. J. 541, L51–L54 (2000).

    Article 

    Google Scholar
     

  • Dermer, C. D. Curvature effects in gamma-ray burst colliding shells. Astrophys. J. 614, 284–292 (2004).

    Article 

    Google Scholar
     

  • Zhang, B.-B., Liang, E.-W. & Zhang, B. A comprehensive analysis of Swift XRT data. I. Apparent spectral evolution of gamma-ray burst X-ray tails. Astrophys. J. 666, 1002–1011 (2007).

    Article 

    Google Scholar
     

  • Zhang, B.-B., Zhang, B., Liang, E.-W. & Wang, X.-Y. Curvature effect of a non-power-law spectrum and spectral evolution of GRB X-ray tails. Astrophys. J. 690, L10–L13 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Gompertz, B. P. et al. A minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission. Nat. Astron. https://doi.org/10.1038/s41550-022-01819-4 (2022).

  • Dai, Z. G. & Lu, T. γ-ray bursts and afterglows from rotating strange stars and neutron stars. Phys. Rev. Lett. 81, 4301–4304 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, B. & Mészáros, P. Gamma-ray burst afterglow with continuous energy injection: signature of a highly magnetized millisecond pulsar. Astrophys. J. 552, L35–L38 (2001).

    Article 

    Google Scholar
     

  • Rees, M. J. & Mészáros, P. Refreshed shocks and afterglow longevity in gamma-ray bursts. Astrophys. J. 496, L1–L4 (1998).

    Article 

    Google Scholar
     

  • Sari, R. & Mészáros, P. Impulsive and varying injection in gamma-ray burst afterglows. Astrophys. J. 535, L33–L37 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Troja, E. et al. Swift observations of GRB 070110: an extraordinary X-ray afterglow powered by the central engine. Astrophys. J. 665, 599–607 (2007).

    Article 

    Google Scholar
     

  • Lyons, N. et al. Can X-ray emission powered by a spinning-down magnetar explain some gamma-ray burst light-curve features? Mon. Not. R. Astron. Soc. 402, 705–712 (2010).

    Article 

    Google Scholar
     

  • Racusin, J. L. et al. Jet breaks and energetics of Swift gamma-ray burst X-ray afterglows. Astrophys. J. 698, 43–74 (2009).

    Article 

    Google Scholar
     

  • Roming, P. W. A. et al. The Swift ultra-violet/optical telescope. Space Sci. Rev. 120, 95–142 (2005).

    Article 

    Google Scholar
     

  • Belles, A. & D’Ai, A.; Swift/UVOT Team. GRB 211211A: Swift/UVOT detection. GRB Coordinates Network, Circular Service, No. 31222 (2021).

  • Ito, N. et al. GRB 211211A: MITSuME Akeno optical observation. GRB Coordinates Network, Circular Service, No. 31217 (2021).

  • Kumar, H. et al. GRB 211211A: HCT and GIT optical follow up observations. GRB Coordinates Network, Circular Service, No. 31227 (2021).

  • Strausbaugh, R. & Cucchiara, A. GRB 211211A: LCO optical observations. GRB Coordinates Network, Circular Service, No. 31214 (2021).

  • Mao, J., Xin, Y.-X. & Bai, J.-M. GRB 211211A: GMG upper limit. GRB Coordinates Network, Circular Service, No. 31232 (2021).

  • Gupta, R. et al. GRB 211211A: observations with the 3.6m Devasthal Optical Telescope. GRB Coordinates Network, Circular Service, No. 31299 (2021).

  • Pankov, N. et al. GRB 211211A: AbAO optical observations. GRB Coordinates Network, Circular Service, No. 31233 (2021).

  • Moskvitin, A. et al. GRB 211211A: SAO RAS optical observations. GRB Coordinates Network, Circular Service, No. 31234 (2021).

  • D’Avanzo, P. et al. GRB 211211A: TNG NIR observations. GRB Coordinates Network, Circular Service, No. 31242 (2021).

  • Gal-Yam, A. et al. A novel explosive process is required for the γ-ray burst GRB 060614. Nature 444, 1053–1055 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Fynbo, J. P. U. et al. No supernovae associated with two long-duration γ-ray bursts. Nature 444, 1047–1049 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Reeves, J. N. et al. The signature of supernova ejecta in the X-ray afterglow of the γ-ray burst 011211. Nature 416, 512–515 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Hjorth, J. et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423, 847–850 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Clocchiatti, A., Suntzeff, N. B., Covarrubias, R. & Candia, P. The ultimate light curve of SN 1998bw/GRB 980425. Astron. J. 141, 163 (2011).

    Article 

    Google Scholar
     

  • Cano, Z. A new method for estimating the bolometric properties of Ibc supernovae. Mon. Not. R. Astron. Soc. 434, 1098–1116 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Ryan, G., van Eerten, H., Piro, L. & Troja, E. Gamma-ray burst afterglows in the multimessenger era: numerical models and closure relations. Astrophys. J. 896, 166 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fitzpatrick, E. L. Correcting for the effects of interstellar extinction. Publ. Astron. Soc. Pac. 111, 63–75 (1999).

    Article 

    Google Scholar
     

  • Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article 

    Google Scholar
     

  • Kasen, D., Badnell, N. R. & Barnes, J. Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys. J. 774, 25 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X.-G. et al. How bad or good are the external forward shock afterglow models of gamma-ray bursts? Astrophys. J. Suppl. Ser. 219, 9 (2015).

    Article 

    Google Scholar
     

  • Rosswog, S. Fallback accretion in the aftermath of a compact binary merger. Mon. Not. R. Astron. Soc. 376, L48–L51 (2007).

    Article 

    Google Scholar
     

  • Lu, W. & Quataert, E. Late-time accretion in neutron star mergers: implications for short gamma-ray bursts and kilonovae. Preprint at https://arxiv.org/abs/2208.04293 (2022).

  • van Putten, M. H. P. M., Lee, G. M., Della Valle, M., Amati, L. & Levinson, A. On the origin of short GRBs with extended emission and long GRBs without associated SN. Mon. Not. R. Astron. Soc. 444, L58–L62 (2014).

    Article 

    Google Scholar
     

  • van Putten, M. H. P. M. Discovery of black hole spindown in the BATSE catalogue of long GRBs. Prog. Theor. Phys. 127, 331–354 (2012).

    Article 
    MATH 

    Google Scholar
     

  • Metzger, B. D., Quataert, E. & Thompson, T. A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 385, 1455–1460 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Shapiro, S. L., Teukolsky, S. A. & Lightman, A. P. Black holes, white dwarfs, and neutron stars: the physics of compact objects. Phys. Today 36, 89 (1983).

    Article 

    Google Scholar
     

  • Xiao, D. & Dai, Z.-G. Determining the efficiency of converting magnetar spindown energy into gamma-ray burst X-ray afterglow emission and its possible implications. Astrophys. J. 878, 62 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, D., Zhang, B.-B. & Dai, Z.-G. On the properties of a newborn magnetar powering the X-ray transient CDF-S XT2. Astrophys. J. Lett. 879, L7 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fryer, C., Benz, W., Herant, M. & Colgate, S. A. What can the accretion-induced collapse of white dwarfs really explain? Astrophys. J. 516, 892–899 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Paczynski, B. Gamma-ray bursters at cosmological distances. Astrophys. J. 308, L43–L46 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989).

    Article 

    Google Scholar
     

  • Paczynski, B. Cosmological gamma-ray bursts. Acta Astron. 41, 257–267 (1991).

    CAS 

    Google Scholar
     

  • Rueda, J. A. et al. GRB 170817A-GW170817-AT 2017gfo and the observations of NS-NS, NS-WD and WD-WD mergers. J. Cosmol. Astropart. Phys. 2018, 006 (2018).

    Article 

    Google Scholar
     

  • Siegel, D. M., Barnes, J. & Metzger, B. D. Collapsars as a major source of r-process elements. Nature 569, 241–244 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Waxman, E., Ofek, E. O. & Kushnir, D. Strong NIR emission following the long duration GRB 211211A: Dust heating as an alternative to a kilonova. Preprint at https://arxiv.org/abs/2206.10710 (2022).

  • Source link