September 18, 2024
A spatial expression atlas of the adult human proximal small intestine – Nature

A spatial expression atlas of the adult human proximal small intestine – Nature

  • Moor, A. E., Harnik, Y., Ben-Moshe, S., Massasa, E. E., Rozenberg, M., Eilam, R., Bahar Halpern, K. & Itzkovitz, S. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156–1167.e15 (2018).

  • Beumer, J. & Clevers, H. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22, 39–53 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonis, V., Rossell, C. & Gehart, H. The intestinal epithelium—fluid fate and rigid structure from crypt bottom to villus tip. Front. Cell Dev. Biol. 9, 661931 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manco, R. et al. Clump sequencing exposes the spatial expression programs of intestinal secretory cells. Nat. Commun. 12, 3074 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahar Halpern, K. et al. Lgr5+ telocytes are a signaling source at the intestinal villus tip. Nat. Commun. 11, 1936 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shoshkes-Carmel, M. et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 557, 242–246 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCarthy, N. et al. Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell 26, 391–402 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valenta, T. et al. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep. 15, 911–918 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science 371, eaba8310 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bujko, A. et al. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J. Exp. Med. 215, 441–458 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Brandtzaeg, P. et al. The B-cell system of human mucosae and exocrine glands. Immunol. Rev. 171, 45–87 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beumer, J. et al. BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states. Cell Rep. 38, 110438 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burclaff, J. et al. A proximal-to-distal survey of healthy adult human small intestine and colon epithelium by single-cell transcriptomics. Cell. Mol. Gastroenterol. Hepatol. https://doi.org/10.1016/j.jcmgh.2022.02.007 (2022).

  • Holloway, E. M. et al. Mapping development of the human intestinal niche at single-cell resolution. Cell Stem Cell 28, 568–580 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Egozi, A. et al. Single-cell atlas of the human neonatal small intestine affected by necrotizing enterocolitis. PLoS Biol. 21, e3002124 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810–826 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickey, J. W. et al. Organization of the human intestine at single-cell resolution. Nature 619, 572–584 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zilbauer, M. et al. A Roadmap for the Human Gut Cell Atlas. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-023-00784-1 (2023).

  • Forrest, A. R. R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bausch-Fluck, D. et al. The in silico human surfaceome. Proc. Natl Acad. Sci. USA 115, E10988–E10997 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuganbaev, T. et al. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell 182, 1441–1459 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harnik, Y. et al. Spatial discordances between mRNAs and proteins in the intestinal epithelium. Nat. Metab. 3, 1680–1693 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, J., Weir, D. G. & Feighery, C. Differential expression of HLA-D gene products in the normal and coeliac small bowel. Tissue Antigens 31, 151–160 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott, H., Solheim, B. G., Brandtzaeg, P. & Thorsby, E. HLA-DR-like antigens in the epithelium of the human small intestine. Scand. J. Immunol. 12, 77–82 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mansbach, C. M. & Siddiqi, S. A. The biogenesis of chylomicrons. Annu. Rev. Physiol. 72, 315 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahmood Hussain, M. A proposed model for the assembly of chylomicrons. Atherosclerosis 148, 1–15 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Chung, J. et al. LDAF1 and seipin form a lipid droplet assembly complex. Dev. Cell 51, 551–563 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hung, Y.-H., Carreiro, A. L. & Buhman, K. K. Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat. Biochim. Biophys. Acta 1862, 600–614 (2017).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Barker, H. G., Malm, J. R. & Reemtsma, K. Comparative fat and fatty acid intestinal absorption test utilizing radioiodine labeling; results in normal subjects. Proc. Soc. Exp. Biol. Med. 92, 471–474 (1956).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawen, A. & Lane, D. J. R. Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid. Redox Signal. 18, 2473–2507 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moor, A. E. et al. Global mRNA polarization regulates translation efficiency in the intestinal epithelium. Science 357, 1299–1303 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zwick, R. K. et al. Epithelial zonation along the mouse and human small intestine defines five discrete metabolic domains. Nat. Cell Biol. https://doi.org/10.1038/s41556-023-01337-z (2024).

  • Meran, L., Baulies, A. & Li, V. S. W. Intestinal stem cell niche: the extracellular matrix and cellular components. Stem Cells Int. 2017, e7970385 (2017).

    Article 

    Google Scholar
     

  • Palikuqi, B. et al. Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury. Cell Stem Cell 29, 1262–1272 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niec, R. E. et al. Lymphatics act as a signaling hub to regulate intestinal stem cell activity. Cell Stem Cell 29, 1067–1082 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernier-Latmani, J. et al. ADAMTS18+ villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nat. Commun. 13, 3983 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santaolalla, R., Fukata, M. & Abreu, M. T. Innate immunity in the small intestine. Curr. Opin. Gastroenterol. 27, 125–131 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moghaddami, M., Cummins, A. & Mayrhofer, G. Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 115, 1414–1425 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crosnier, C., Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet. 7, 349–359 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brügger, M. D. & Basler, K. The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends Cell Biol. 33, 834–849 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chiquet-Ehrismann, R. Tenascins. Int. J. Biochem. Cell Biol. 36, 986–990 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Treuting, P. M., Arends, M. J. & Dintzis, S. M. in Comparative Anatomy and Histology (Second Edition) (eds. Treuting, P. M. et al.) Ch. 11, 191–211 (Academic, 2018). https://doi.org/10.1016/B978-0-12-802900-8.00011-7.

  • Subiran Adrados, C., Yu, Q., Bolaños Castro, L. A., Rodriguez Cabrera, L. A. & Yun, M. H. Salamander-Eci: an optical clearing protocol for the three-dimensional exploration of regeneration. Dev. Dyn. 250, 902–915 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-019-0134-x (2019).

  • Trautmann, A. Extracellular ATP in the immune system: more than just a ‘danger signal’. Sci. Signal. 2, pe6 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Mabley, J. G. et al. Inosine reduces inflammation and improves survival in a murine model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G138–G144 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, T. et al. ADAMDEC1 promotes skin inflammation in rosacea via modulating the polarization of M1 macrophages. Biochem. Biophys. Res. Commun. 521, 64–71 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Shea, N. R. et al. Critical role of the disintegrin metalloprotease ADAM-like decysin-1 [ADAMDEC1] for intestinal immunity and inflammation. J. Crohns Colitis 10, 1417–1427 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumoto, T. et al. Serrated adenoma in familial adenomatous polyposis: relation to germline APC gene mutation. Gut 50, 402–404 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snover, D. C. Update on the serrated pathway to colorectal carcinoma. Hum. Pathol. 42, 1–10 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Rubio, C. A. Serrated adenoma of the duodenum. J. Clin. Pathol. 57, 1219–1221 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyubimova, A. et al. Single-molecule mRNA detection and counting in mammalian tissue. Nat. Protoc. 8, 1743–1758 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bagnoli, J. W. et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat. Commun. 9, 2937 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohen, R. et al. UTAP: User-friendly Transcriptome Analysis Pipeline. BMC Bioinform. 20, 154 (2019).

    Article 

    Google Scholar
     

  • Elinger, D., Gabashvili, A. & Levin, Y. Suspension trapping (S-Trap) is compatible with typical protein extraction buffers and detergents for bottom-up proteomics. J. Proteome Res. 18, 1441–1445 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, Z. Complex heatmap visualization. iMeta 1, e43 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize Implements and enhances circular visualization in R. Bioinform. Oxf. Engl. 30, 2811–2812 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ni, Z. et al. SpotClean adjusts for spot swapping in spatial transcriptomics data. Nat. Commun. 13, 2971 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Article 
    MathSciNet 

    Google Scholar
     

  • Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50, D988–D995 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974).

    MathSciNet 

    Google Scholar
     

  • Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickey, J. W., Tan, Y., Nolan, G. P. & Goltsev, Y. Strategies for accurate cell type identification in CODEX multiplexed imaging data. Front. Immunol. 12, 727626 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramilowski, J. A. et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat. Commun. 6, 7866 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shannon, C. E. The mathematical theory of communication. 1963. MD Comput. 14, 306–317 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Harnik, Y. et al. Spatial transcriptomics data for ‘A spatial expression atlas of the adult human proximal small intestine’. Zenodo https://doi.org/10.5281/zenodo.10715015 (2024).

  • Harnik, Y. et al. Human villus zonation segmental tables for ‘A spatial expression atlas of the adult human proximal small intestine’. Zenodo https://doi.org/10.5281/zenodo.11490477 (2024).

  • Harnik, Y. et al. LCM RNA-seq and proteomics raw data for ‘A spatial expression atlas of the adult human proximal small intestine’. Zenodo https://doi.org/10.5281/zenodo.10715015 (2024).

  • Harnik, Y. et al. CODEX data for ‘A spatial expression atlas of the adult human proximal small intestine’. Zenodo https://doi.org/10.5281/zenodo.10724499 (2024).

  • Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Bile acid-dependent transcription factors and chromatin accessibility determine regional heterogeneity of intestinal antimicrobial peptides. Nat. Commun. 14, 5093 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hortsch, M. The Michigan Histology website as an example of a free anatomical resource serving learners and educators worldwide. Anat. Sci. Educ. 16, 363–371 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Source link