April 24, 2024
Adenylate cyclase activity of TIR1/AFB auxin receptors in plants – Nature

Adenylate cyclase activity of TIR1/AFB auxin receptors in plants – Nature

  • Friml, J. Fourteen stations of auxin. Cold Spring Harb. Perspect. Biol. 14, a039859 (2021).


    Google Scholar
     

  • Parry, G. & Estelle, M. Auxin receptors: a new role for F-box proteins. Curr. Opin. Cell Biol. 18, 152–156 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Quint, M. & Gray, W. M. Auxin signaling. Curr. Opin. Plant Biol. 9, 448–453 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gray, W. M. et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13, 1678–1691 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gray, W. M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271–276 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kepinski, S. & Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Prigge, M. J. et al. Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. eLife 9, e54740 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kubes, M. & Napier, R. Non-canonical auxin signalling: fast and curious. J. Exp. Bot. 70, 2609–2614 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallei, M., Luschnig, C. & Friml, J. Auxin signalling in growth: Schrodinger’s cat out of the bag. Curr. Opin. Plant Biol. 53, 43–49 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Fendrych, M. et al. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4, 453–459 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. et al. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature 599, 273–277 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serre, N. B. C. et al. AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nat. Plants 7, 1229–1238 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shih, H. W., DePew, C. L., Miller, N. D. & Monshausen, G. B. The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Curr. Biol. 25, 3119–3125 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Dindas, J. et al. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat. Commun. 9, 1174 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gehring, C. Adenyl cyclases and cAMP in plant signaling—past and present. Cell Commun. Signal. 8, 15 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong, A., Gehring, C. & Irving, H. R. Conserved functional motifs and homology modeling to predict hidden moonlighting functional sites. Front. Bioeng. Biotechnol. 3, 82 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swiezawska, B. et al. Molecular cloning and characterization of a novel adenylyl cyclase gene, HpAC1, involved in stress signaling in Hippeastrum x hybridum. Plant Physiol. Biochem. 80, 41–52 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Younis, I., Wong, A. & Gehring, C. The Arabidopsis thaliana K+-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre. FEBS Lett. 589, 3848–3852 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Younis, I. et al. The Arabidopsis thaliana K+-uptake permease 5 (AtKUP5) contains a functional cytosolic adenylate cyclase essential for K+ transport. Front. Plant Sci. 9, 1645 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatukuta, P. et al. An Arabidopsis clathrin assembly protein with a predicted role in plant defense can function as an adenylate cyclase. Biomolecules 8, 15 (2018).

    PubMed Central 

    Google Scholar
     

  • Bianchet, C. et al. An Arabidopsis thaliana leucine-rich repeat protein harbors an adenylyl cyclase catalytic center and affects responses to pathogens. J. Plant Physiol. 232, 12–22 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Prigge, M. J., Lavy, M., Ashton, N. W. & Estelle, M. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr. Biol. 20, 1907–1912 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Johnstone, T. B., Agarwal, S. R., Harvey, R. D. & Ostrom, R. S. cAMP signaling compartmentation: adenylyl cyclases as anchors of dynamic signaling complexes. Mol. Pharmacol. 93, 270–276 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parry, G. et al. Complex regulation of the TIR1/AFB family of auxin receptors. Proc. Natl Acad. Sci. USA 106, 22540–22545 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uchida, N. et al. Chemical hijacking of auxin signaling with an engineered auxin–TIR1 pair. Nat. Chem. Biol. 14, 299–305 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L., Gallei, M. & Friml, J. Bending to auxin: fast acid growth for tropisms. Trends Plant Sci. 27, 440–449 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Beavo, J. A. & Brunton, L. L. Cyclic nucleotide research–still expanding after half a century. Nat. Rev. Mol. Cell Biol. 3, 710–718 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Trewavas, A. J. Plant cyclic AMP comes in from the cold. Nature 390, 657–658 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwezi, L. et al. The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J. Biol. Chem. 286, 22580–22588 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wheeler, J. I. et al. The brassinosteroid receptor BRI1 can generate cGMP enabling cGMP-dependent downstream signaling. Plant J. 91, 590–600 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Dharmasiri, N. et al. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9, 109–119 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Toyota, M. et al. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361, 1112–1115 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Longair, M. H., Baker, D. A. & Armstrong, J. D. Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27, 2453–2454 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, L., Krens, S. F. G., Fendrych, M. & Friml, J. Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana hypocotyls. Bio. Protoc. 8, e2685 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. et al. Defining binding efficiency and specificity of auxins for SCFTIR1/AFB–Aux/IAA co-receptor complex formation. ACS Chem. Biol. 9, 673–682 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Quareshy, M. et al. The tetrazole analogue of the auxin indole-3-acetic acid binds preferentially to TIR1 and not AFB5. ACS Chem. Biol. 13, 2585–2594 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Van Damme, T. et al. Wounding stress causes rapid increase in concentration of the naturally occurring 2′,3′-isomers of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in plant tissues. Phytochemistry 103, 59–66 (2014).

    PubMed 

    Google Scholar
     

  • Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanwell, M. D. et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Boyle, N. M. et al. Open Babel: an open chemical toolbox. J. Cheminform. 3, 33 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Sanner, M. F., Olson, A. J. & Spehner, J. C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Barbez, E., Dunser, K., Gaidora, A., Lendl, T. & Busch, W. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 114, E4884–E4893 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link