August 13, 2022

Androgens increase excitatory neurogenic potential in human brain organoids – Nature

  • 1.

    Ritchie, S. J. et al. Sex differences in the adult human brain: evidence from 5216 UK Biobank participants. Cereb. Cortex 28, 2959–2975 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Ruigrok, A. N. V. et al. A meta-analysis of sex differences in human brain structure. Neurosci. Biobehav. Rev. 39, 34–50 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Green, T., Flash, S. & Reiss, A. L. Sex differences in psychiatric disorders: what we can learn from sex chromosome aneuploidies. Neuropsychopharmacol. 44, 9–21 (2018).


    Google Scholar
     

  • 5.

    McCarthy, M. M. Multifaceted origins of sex differences in the brain. Phil. Trans. R. Soc. B 371, 20150106 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Loomes, R., Hull, L. & Mandy, W. P. L. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 56, 466–474 (2017).

    PubMed 

    Google Scholar
     

  • 7.

    Abel, K. M., Drake, R. & Goldstein, J. M. Sex differences in schizophrenia. Int. Rev. Psychiatry 22, 417–428 (2010).

    PubMed 

    Google Scholar
     

  • 8.

    Hines, M. Neuroscience and sex/gender: looking back and looking forward. J. Neurosci. 40, 37–43 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    McCarthy, M. M. & Arnold, A. P. Reframing sexual differentiation of the brain. Nat. Neurosci. 14, 677–683 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Woodson, J. C. & Gorski, R. A. in Sexual Differentiation of the Brain (ed. Matsumoto, A.) Ch. 13 (CRC Press, 1999).

  • 11.

    Rabinowicz, T., Dean, D. E., Petetot, J. M.-C. & Courten-Myers, G. M. D. E. Gender differences in the human cerebral cortex: more neurons in males; more processes in females. J. Child Neurol. 14, 98–107 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Knickmeyer, R. C. et al. Impact of sex and gonadal steroids on neonatal brain structure. Cereb. Cortex 24, 2721–2731 (2014).

    PubMed 

    Google Scholar
     

  • 13.

    Arnold, A. P. A general theory of sexual differentiation. J. Neurosci. Res. 95, 291–300 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Arnold, A. P. The organizational–activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm. Behav. 55, 570–578 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    McCarthy, M. M. Estradiol and the developing brain. Physiol. Rev. 88, 91–134 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Wallen, K. Hormonal influences on sexually differentiated behavior in nonhuman primates. Front. Neuroendocrin. 26, 7–26 (2005).

    CAS 

    Google Scholar
     

  • 17.

    Miller, W. L. & Auchus, R. J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Davey, R. A. & Grossmann, M. Androgen receptor structure, function and biology: from bench to bedside. Clin. Biochem. Rev. 37, 3–15 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Quartier, A. et al. Genes and pathways regulated by androgens in human neural cells, potential candidates for the male excess in autism spectrum disorder. Biol. Psychiat. 84, 239–252 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Qu, Y. et al. Constitutively active AR-V7 plays an essential role in the development and progression of castration-resistant prostate cancer. Sci. Rep. 5, 7654 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Jeselsohn, R. et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin. Cancer Res. 20, 1757–1767 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Kalinka, A. T. Improving the sensitivity of differential-expression analyses for under-powered RNA-seq experiments. Preprint at https://doi.org/10.1101/2020.10.15.340737 (2020).

  • 25.

    Tang, T. et al. HDAC1 and HDAC2 regulate intermediate progenitor positioning to safeguard neocortical development. Neuron 101, 1117–1133 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Li, L., Jin, J. & Yang, X.-J. Histone deacetylase 3 governs perinatal cerebral development via neural stem and progenitor cells. Iscience 20, 148–167 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Dey, A. et al. YB-1 is elevated in medulloblastoma and drives proliferation in Sonic hedgehog-dependent cerebellar granule neuron progenitor cells and medulloblastoma cells. Oncogene 35, 4256–4268 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Kielar, M. et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat. Neurosci. 17, 923–933 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Abrahams, B. S. et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 4, 36–36 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Hackinger, S. et al. Evidence for genetic contribution to the increased risk of type 2 diabetes in schizophrenia. Transl. Psychiatry 8, 252 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Udawela, M. et al. SELENBP1 expression in the prefrontal cortex of subjects with schizophrenia. Transl. Psychiatry 5, e615 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Fatemi, S. H., Folsom, T. D. & Thuras, P. D. Deficits in GABAB receptor system in schizophrenia and mood disorders: a postmortem study. Schizophr. Res. 128, 37–43 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Narayan, S., Head, S. R., Gilmartin, T. J., Dean, B. & Thomas, E. A. Evidence for disruption of sphingolipid metabolism in schizophrenia. J. Neurosci. Res. 87, 278–288 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Göttlicher, M. et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20, 6969–6978 (2001).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Boissinot, M. et al. Induction of differentiation and apoptosis in leukaemic cell lines by the novel benzamide family histone deacetylase 2 and 3 inhibitor MI-192. Leukemia Res. 36, 1304–1310 (2012).

    CAS 

    Google Scholar
     

  • 37.

    Saito, A. et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad. Sci. USA 96, 4592–4597 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Alexeyenko, A. et al. Comparative interactomics with Funcoup 2.0. Nucleic Acids Res. 40, D821–D828 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Mayer, C. & Grummt, I. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25, 6384–6391 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Kim, W.-Y. Brain size is controlled by the mammalian target of rapamycin (mTOR) in mice. Commun. Integr. Biol. 8, e994377 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 169, 361–371 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Voss, M. H. et al. Phase 1 study of mTORC1/2 inhibitor sapanisertib (TAK-228) in advanced solid tumours, with an expansion phase in renal, endometrial or bladder cancer. Br. J. Cancer 123, 1590–1598 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Choi, Y. J. et al. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion. PLoS ONE 7, e43418 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Sohal, V. S. & Rubenstein, J. L. R. Excitation–inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol. Psychiatr. 24, 1248–1257 (2019).


    Google Scholar
     

  • 45.

    Marín, O. & Müller, U. Lineage origins of GABAergic versus glutamatergic neurons in the neocortex. Curr. Opin. Neurobiol. 26, 132–141 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    O’Shaughnessy, P. J. et al. Alternative (backdoor) androgen production and masculinization in the human fetus. PLoS Biol. 17, e3000002 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Martínez‐Cerdeño, V., Noctor, S. C. & Kriegstein, A. R. Estradiol stimulates progenitor cell division in the ventricular and subventricular zones of the embryonic neocortex. Eur. J. Neurosci. 24, 3475–3488 (2006).

    PubMed 

    Google Scholar
     

  • 48.

    Eliot, L., Ahmed, A., Khan, H. & Patel, J. Dump the “dimorphism”: comprehensive synthesis of human brain studies reveals few male–female differences beyond size. Neurosci. Biobehav. Rev. 125, 667–697 (2021).

    PubMed 

    Google Scholar
     

  • 49.

    Knickmeyer, R. C. & Baron-Cohen, S. Fetal testosterone and sex differences. Early Hum. Dev. 82, 755–760 (2006).

    CAS 

    Google Scholar
     

  • 50.

    Bahari-Javan, S. et al. HDAC1 links early life stress to schizophrenia-like phenotypes. Proc. Natl Acad. Sci. USA 114, E4686–E4694 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Ryskalin, L., Limanaqi, F., Frati, A., Busceti, C. L. & Fornai, F. mTOR-related brain dysfunctions in neuropsychiatric disorders. Int. J. Mol. Sci. 19, 2226 (2018).

    PubMed Central 

    Google Scholar
     

  • 52.

    Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Bagley, J. A., Reumann, D., Bian, S., Lévi-Strauss, J. & Knoblich, J. A. Fused cerebral organoids model interactions between brain regions. Nat. Methods 14, 743–751 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Hines, M., Constantinescu, M. & Spencer, D. Early androgen exposure and human gender development. Biol. Sex Differ. 6, 3 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Reyes, F. I., Boroditsky, R. S., Winter, J. D. S. & Faiman, C. Studies on human sexual development. II. Fetal and maternalserum gonadotropin and sex steroid concentrations. J. Clin. Endocrinol. Metab. 38, 612–617 (1974).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    McManus, J. M. & Sharifi, N. Structure-dependent retention of steroid hormones by common laboratory materials. J. Steroid Biochem. Mol. Biol. 198, 105572 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Shoskes, J. J., Wilson, M. K. & Spinner, M. L. Pharmacology of testosterone replacement therapy preparations. Transl. Androl. Urol. 5, 834–843 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Wright, A. S., Thomas, L. N., Douglas, R. C., Lazier, C. B. & Rittmaster, R. S. Relative potency of testosterone and dihydrotestosterone in preventing atrophy and apoptosis in the prostate of the castrated rat. J. Clin. Invest. 98, 2558–2563 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Iacopino, F. et al. Valproic acid activity in androgen-sensitive and -insensitive human prostate cancer cells. Int. J. Oncol. 32, 1293–1303 (1992).


    Google Scholar
     

  • 61.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Giandomenico, S. L. et al. Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22, 669–679 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Gerard, D. Data-based RNA-seq simulations by binomial thinning. BMC Bioinformatics 21, 206 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Benito-Kwiecinski, S. et al. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 184, 2084–2102 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Noctor, S. C., Martínez‐Cerdeño, V. & Kriegstein, A. R. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J. Comp. Neurol. 508, 28–44 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Giandomenico, S. L., Sutcliffe, M. & Lancaster, M. A. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat. Protoc. 16, 579–602 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Source link