April 25, 2024
Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile – Nature

Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile – Nature

  • CDC. Antibiotic Resistance Threats in the United States, 2019 (U.S. Department of Health and Human Services, CDC 2019); https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf

  • Louie, T. J. et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N. Engl. J. Med. 364, 422–431 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Crawford, T., Huesgen, E. & Danziger, L. Fidaxomicin: a novel macrocyclic antibiotic for the treatment of Clostridium difficile infection. Am. J. Health Syst. Pharm. 69, 933–943 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Louie, T. J., Emery, J., Krulicki, W., Byrne, B. & Mah, M. OPT-80 eliminates Clostridium difficile and is sparing of bacteroides species during treatment of C. difficile infection. Antimicrob. Agents Chemother. 53, 261–263 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Y. J. et al. Protective factors in the intestinal microbiome against Clostridium difficile infection in recipients of allogeneic hematopoietic stem cell transplantation. J. Infect. Dis. 215, 1117–1123 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vincent, C. & Manges, A. R. Antimicrobial use, human gut microbiota and Clostridium difficile colonization and infection. Antibiotics 4, 230–253 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyaci, H. et al. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. eLife 7, e34823 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, W. et al. Structural basis of transcription inhibition by fidaxomicin (lipiarmycin A3). Mol. Cell 70, 60–71.e15 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morichaud, Z., Chaloin, L. & Brodolin, K. Regions 1.2 and 3.2 of the RNA polymerase σ subunit promote DNA melting and attenuate action of the antibiotic lipiarmycin. J. Mol. Biol. 428, 463–476 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Tupin, A., Gualtieri, M., Leonetti, J. P. & Brodolin, K. The transcription inhibitor lipiarmycin blocks DNA fitting into the RNA polymerase catalytic site. EMBO J. 29, 2527–2537 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyaci, H., Chen, J., Jansen, R., Darst, S. A. & Campbell, E. A. Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature 565, 382–385 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J., Boyaci, H. & Campbell, E. A. Diverse and unified mechanisms of transcription initiation in bacteria. Nat. Rev. Microbiol. 19, 95–109 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Lane, W. J. & Darst, S. A. Molecular evolution of multisubunit RNA polymerases: sequence analysis. J. Mol. Biol. 395, 671–685 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Mani, N., Dupuy, B. & Sonenshein, A. L. Isolation of RNA polymerase from Clostridium difficile and characterization of glutamate dehydrogenase and rRNA gene promoters in vitro and in vivo. J. Bacteriol. 188, 96–102 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).

    PubMed 

    Google Scholar
     

  • Bae, B. et al. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1. Proc. Natl Acad. Sci. USA 110, 19772–19777 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pei, H. H. et al. The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat. Commun. 11, 6418 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, C. et al. The bacterial multidrug resistance regulator BmrR distorts promoter DNA to activate transcription. Nat. Commun. 11, 6284 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, E. A. et al. Structure of the bacterial RNA polymerase promoter specificity σ subunit. Mol. Cell 9, 527–539 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Hubin, E. A. et al. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife 6, e22520 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. 6S RNA mimics B-form DNA to regulate Escherichia coli RNA polymerase. Mol. Cell 68, 388–397.e386 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feklistov, A. et al. RNA polymerase motions during promoter melting. Science 356, 863–866 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babakhani, F., Seddon, J. & Sears, P. Comparative microbiological studies of transcription inhibitors fidaxomicin and the rifamycins in Clostridium difficile. Antimicrob. Agents Chemother. 58, 2934–2937 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuehne, S. A. et al. Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin. J. Antimicrob. Chemother. 73, 973–980 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Goldstein, E. J., Babakhani, F. & Citron, D. M. Antimicrobial activities of fidaxomicin. Clin. Infect. Dis. 55, S143–S148 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurabachew, M. et al. Lipiarmycin targets RNA polymerase and has good activity against multidrug-resistant strains of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 62, 713–719 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Srivastava, A. et al. New target for inhibition of bacterial RNA polymerase: ‘switch region’. Curr. Opin. Microbiol. 14, 532–543 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37, 186–192 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wexler, A. G. & Goodman, A. L. An insider’s perspective: Bacteroides as a window into the microbiome. Nat. Microbiol 2, 17026 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • King, C. H. et al. Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS ONE 14, e0206484 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corbett, D. et al. Potentiation of antibiotic activity by a novel cationic peptide: potency and spectrum of activity of SPR741. Antimicrob. Agents Chemother. 61, e00200–17 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaara, M. et al. A novel polymyxin derivative that lacks the fatty acid tail and carries only three positive charges has strong synergism with agents excluded by the intact outer membrane. Antimicrob. Agents Chemother. 54, 3341–3346 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch, M. et al. Design parameters to control synthetic gene expression in Escherichia coli. PLoS ONE 4, e7002 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czyz, A., Mooney, R. A., Iaconi, A. & Landick, R. Mycobacterial RNA polymerase requires a U-tract at intrinsic terminators and is aided by NusG at suboptimal terminators. Mbio 5, e00931 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. & Lewis, P. J. Overproduction and purification of recombinant Bacillus subtilis RNA polymerase. Protein Expr. Purif. 59, 86–93 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Davis, E., Chen, J., Leon, K., Darst, S. A. & Campbell, E. A. Mycobacterial RNA polymerase forms unstable open promoter complexes that are stabilized by CarD. Nucleic Acids Res. 43, 433–445 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Heymann, J. B. & Belnap, D. M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, X. et al. Structural basis for NusA stabilized transcriptional pausing. Mol. Cell 69, 816–827.e814 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    CAS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D 74, 814–840 (2018).

    CAS 

    Google Scholar
     

  • Toulokhonov, I., Zhang, J., Palangat, M. & Landick, R. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol. Cell 27, 406–419 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Weilbaecher, R., Hebron, C., Feng, G. & Landick, R. Termination-altering amino acid substitutions in the β′ subunit of Escherichia coli RNA polymerase identify regions involved in RNA chain elongation. Genes Dev. 8, 2913–2927 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Burby, P. E. & Simmons, L. A. CRISPR/Cas9 editing of the Bacillus subtilis genome. Bio. Protoc. 7, e2272 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hockett, K. L. & Baltrus, D. A. Use of the soft-agar overlay technique to screen for bacterially produced inhibitory compounds. J. Vis. Exp. 119, 55064 (2017).


    Google Scholar
     

  • Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucl. Acids Res. 47 (W1), W256–W259 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link