April 25, 2024
Biomolecular analyses enable new insights into ancient Egyptian embalming – Nature

Biomolecular analyses enable new insights into ancient Egyptian embalming – Nature

  • Hussein, R. B. in Guardian of Ancient Egypt. Studies in Honor of Zahi Hawass, II (ed Kamrin, J. et al.) 627–682 (Czech Institute of Egyptology, 2020).

  • Hussein, R. B. & Marchand, S. A mummification workshop in Saqqara: the pottery from the main shaft K24. Saqqara Saite Tombs Project (SSTP). Bulletin de Liaison de la Céramique Égyptienne 29, 101–132 (2019).


    Google Scholar
     

  • Evershed, R. P. & Clark, K. A. in The Handbook of Mummy Studies: New Frontiers in Scientific and Cultural Perspectives (eds Shin, D. H. & Bianucci, R.) 653–715 (Springer, 2021).

  • Clark, K. A., Ikram, S. & Evershed, R. P. The significance of petroleum bitumen in ancient Egyptian mummies. Philos. Trans. A 374, 20160229 (2016).

    Article 

    Google Scholar
     

  • Buckley, S. & Evershed, R. P. Organic chemistry of embalming agents in Pharaonic and Graeco-Roman mummies. Nature 413, 837–841 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Łucejko, J., Connan, J., Orsini, S., Ribechini, E. & Modugno, F. Chemical analyses of Egyptian mummification balms and organic residues from storage jars dated from the Old Kingdom to the Copto-Byzantine period. J. Archaeolog. Sci. 85, 1–12 (2017).

    Article 

    Google Scholar
     

  • Connan, J. in Encyclopédie Religieuse de L’Univers Végétal Croynces Phytoreligieuses de L’Egypte Ancienne (ERUV) III (ed. Aufrère, S. H.) (OrMondp XVI, 2005).

  • Stern, B., Heron, C., Corr, L., Serpico, M. & Bourriau, J. Compositional variations in aged and heated Pistacia resin found un Late Bronze age Canaanite amphorae and bowls from Arman, Egypt. Archaeometry 45, 457–469 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Serpico, M. in Metron. Measuring the Aegean Bronze Age. Proc. 9th International Aegean Conference, Yale University 18-21 April, 2002. Annales d’Archéologie Égéenne de l’Université de Liège (ed. Laffineur, R.) 224–230 (2003).

  • Moreno García, J. C. in Markets and Exchanges in Pre-Modern and Traditional Societies (ed. García, J. C. M.) 198–229 (Oxbow Books, 2021).

  • Germer, R. Handbuch der Altägyptischen Heilpflanzen 4349 (Harrasowitz, 2008).

  • Kemna, C. M. in Im Schatten der Zeder. Eine Kulturübergreifende Spurensuche zu der Identität und Kultischen Verwendung des ʿš-Baumes 149–155 (Göttiner Miszellen, 2018).

  • Koura, B. in Die7-Heiligen Öleund andere Öl- und Fettnamen. Eine Lexikographische Untersuchung zu den Bezeichnungen von Ölen, Fetten und Salben bei den alten Ägyptern von der Frühzeit bis zum Anfang der Ptolemäerzeit (von 3000 v.Chr.–ca. 305 v.Chr.) (Shaker, 1999).

  • Töpfer, S. Das Balsamierungsritual. Eine (Neu-)Edition der Textkomposition Balsamierungsritual (Harrassowitz, 2015).

  • Ikram, S. & Dodson, A. The Mummy in Ancient Egypt: Equipping the Dead for Eternity (Thames and Hudson, 1998).

  • Jones, J., Higham, T. F., Oldfield, R., O’Connor, T. P. & Buckley, S. A. Evidence for prehistoric origins of Egyptian mummification in late Neolithic burials. PLoS ONE 9, e103608 (2014).

    Article 

    Google Scholar
     

  • Assmann, J. Death and Salvation in Ancient Egypt (trans: Lorton, D.) (Cornell Univ. Press, 2005).

  • Quack, J. F. in Texte zur Wissenskultur (eds Janowski, B. & Schwemer, D.) 418–438 (Gütersloh, 2020).

  • García-Jiménez, L. in Pharmacy and Medicine in Ancient Egypt: Proceedings of the Conference held in Barcelona (2018) (ed. Solà, R. D.) 15–29 (Archaeopress, 2021).

  • Pommerening, T. in Zwischen Philologie und Lexikographie des Ägyptisch-Koptischen. Akten der Leipziger Abschlusstagung des AkademienprojektsAltägyptisches Wörterbuch’ (eds Dils, P. & Popko, L.) 82–111 (S. Hirzel, 2016).

  • Mills, J. S. & white, R. Natural resins of art and archaeology their sources, chemistry, and identification. Stud. Conserv. 22, 12–31 (1977).

    CAS 

    Google Scholar
     

  • Sarret, M. et al. Organic substances from Egyptian jars of the Early Dynastic period (3100–2700 bce): Mode of preparation, alteration processes and botanical (re)assessment of ‘cedrium’. J. Archaeol. Sci. Rep. 14, 420–431 (2017).


    Google Scholar
     

  • Buckley, S., clark, K. A. & Evershed, R. P. Complex organic chemical balms of Pharaonic animal mummies. Nature 431, 294–299 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Huber, B., Vassão, D. G., Roberts, P., Wang, Y. V. & Larsen, T. Chemical modification of biomarkers through accelerated degradation: implications for ancient plant identification in archaeo-organic residues. Molecules 27, 3331 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bandaranayake, W. M. Terpenoids of Canarium zeylanicum. Phytochemistry 19, 255–257 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Hinge, V. K., Wagh, A. D., Paknikar, S. K. & Bhattacharyya, S. C. Terpenoids—LXXI: constituents of Indian black dammar resin. Tetrahedron 21, 3197–3203 (1965).

    Article 
    CAS 

    Google Scholar
     

  • Cartoni, G., Russo, M. V., Spinelli, F. & Talarico, F. GC–MS characterisation and identification of natural terpenic resins employed in works of art. Ann. Chim. 94, 767–782 (2004).

    Article 
    CAS 

    Google Scholar
     

  • De la Cruz-Cañizares, J., Doménech-Carbó, M.-T., Gimeno-Adelantado, J.-V., Mateo-Castro, R. & Bosch-Reig, F. Study of Burseraceae resins used in binding media and varnishes from artworks by gas chromatography–mass spectrometry and pyrolysis–gas chromatography–mass spectrometry. J. Chromatogr. A 1093, 177–194 (2005).

    Article 

    Google Scholar
     

  • Kikuchi, T. et al. Melanogenesis inhibitory activity of sesquiterpenes from Canarium ovatum resin in mouse B16 melanoma cells. Chem. Biodivers. 9, 1500–1507 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Langenheim, J. H. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany (Timber Press, 2003).

  • van der Doelen, G. A. et al. Analysis of fresh triterpenoid resins and aged triterpenoid varnishes by high-performance liquid chromatography–atmospheric pressure chemical ionisation (tandem) mass spectrometry. J. Chromatogr. A 809, 21–37 (1998).

    Article 

    Google Scholar
     

  • Burger, P., Charrié-Duhaut, A., Connan, J., Flecker, M. & Albrecht, P. Archaeological resinous samples from Asian wrecks: taxonomic characterization by GC–MS. Anal. Chim. Acta 648, 85–97 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Charrié-Duhaut, A., Burger, P., Maurer, J., Connan, J. & Albrecht, P. Molecular and isotopic archaeology: top grade tools to investigate organic archaeological materials. Comptes Rendus Chim. 12, 1140–1153 (2009).

    Article 

    Google Scholar
     

  • Colombini, M. P. & Modugno, F. Organic Mass Spectrometry in Art and Archaeology (Willey, 2009).

  • Regert, M. Analytical strategies for discriminating archeological fatty substances from animal origin. Mass Spectrom. Rev. 30, 177–220 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Charrié-Duhaut, A. et al. The canopic jars of Rameses II: real use revealed by molecular study of organic residues. J. Archaeolog. Sci. 34, 957–967 (2007).

    Article 

    Google Scholar
     

  • Rageot, M. et al. New insights into Early Celtic consumption practices: organic residue analyses of local and imported pottery from Vix-Mont Lassois. PLoS ONE 14, e0218001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Regert, M., Bland, H. A., Dudd, S. N., Bergen, P. F. V. & Evershed, R. P. Free and bound fatty acid oxidation products in archaeological ceramic vessels. Proc. R. Soc. Lond. B 265, 2027–2032 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Copley, M. S., Bland, H. A., Rose, P., Horton, M. & Evershed, R. P. Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst 130, 860–871 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Yatsishina, E. B., Pozhidaev, V. M., Sergeeva, Y. E., Malakhov, S. N. & Slushnaya, I. S. An integrated study of the hair coating of ancient Egyptian mummies. J. Anal. Chem. 75, 262–274 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lucejko, J. J. et al. Long-lasting ergot lipids as new biomarkers for assessing the presence of cereals and cereal products in archaeological vessels. Sci. Rep. 8, 3935 (2018).

    Article 

    Google Scholar
     

  • Regert, M., Colinart, S., Degrand, L. & Decavallas, O. Chemical alteration and use of beeswax through time :accelerated ageing test and analysis of archaeological samples from various environmental contexts. Archaeometry 43, 549–569 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Connan, J. Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals secrets of past civilizations. Philos. Trans. R Soc. Lond. B Biol. Sci. 354, 33–50 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Fulcher, K. & Budka, J. Pigments, incense, and bitumen from the New Kingdom town and cemetery on Sai Island in Nubia. J. Archaeol. Sci. Rep. 33, 102550 (2020).


    Google Scholar
     

  • Dudd, S. N. & Evershed, R. P. Unsual triterpenoid fatty acyl ester component of archaeological birch bark tars. Tetrahedron Lett. 40, 359–362 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Serpico, M. & White, R. Chemical analysis of coniferous resins from ancient Egypt using gas chromatography/mass spectrometry (GC/MS). In Proc. 7th International Congress of Egyptologists, Leuven (1998).

  • Fulcher, K., Serpico, M., Taylor, J. H. & Stacey, R. Molecular analysis of black coatings and anointing fluids from ancient Egyptian coffins, mummy cases, and funerary objects. Proc. Natl Acad. Sci. USA 118, e2100885118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Deines, H. V. & Westendorf, W. Wörterbuch der Medizinischen Texte. Grundriss der Medizin der Alten Ägypter 7 (Akademie, 1961).

  • Rageot, M. et al. Birch bark tar production: experimental and biomolecular approaches to the study of a common and widely used prehistoric adhesive. J. Archaeol. Method Theor. 26, 276–312 (2019).

    Article 

    Google Scholar
     

  • Koller, J., Baumer, U., Kaup, Y., Schmid, M. & Weser, U. Ancient materials: analysis of a pharaonic embalming tar. Nature 425, 784 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Serpico, M. in Ancient Egyptian Materials and Technology (eds Nicholson, P. T. & Shaw, I.) 430–474 (Cambridge Univ. Press, 2000).

  • Quack, J. F. in Ägyptische Mumien. Unsterblichkeit im Land der Pharaonen 19–27 (Landesmuseum Württemberg, 2007).

  • Nissenbaum, A. & Buckley, S. Dead Sea asphalt in Ancient Egyptian mummies—why? Archaeometry 55, 563–568 (2013).

    Article 

    Google Scholar
     

  • Scott, A. et al. Exotic foods reveal contact between South Asia and the Near East during the second millennium bce. Proc. Natl Acad. Sci. USA 118, e2014956117 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kockelmann, H. & Rickert, A. Von Meroe bis Indien. Fremdvölkerlisten und Nubische Gabenträger in den Griechisch-Römischen Tempeln, Soubassementstudien V, Studien zur Spätägyptischen Religion 12. 53–54 (Harrassowitz, 2015).

  • Mottram, H. R., Dudd, S. N., Lawrence, G. J., Stott, A. W. & Evershed, R. P. New chromatographic, mass spectrometric and stable isotope approaches to the classification of degraded animal fats preserved in archaeological pottery. J. Chromatogr. A 833, 209–221 (1999).

    Article 
    CAS 

    Google Scholar
     

  • van den Berg, K. J., Boon, J. J., Pastorova, I. & Spetter, L. F. M. Mass spectrometric methodology for the analysis of highly oxidized diterpenoid acids in old master paintings. J. Mass Spectrom. 35, 512–533 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Mathe, C., Culioli, G., Archier, P. & Vieillescazes, C. Characterization of archaeological frankincense by gas chromatography–mass spectrometry. J. Chromatogr. A 1023, 277–285 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry edn 4.1 (Allured Business Media, 2017).

  • National Institute of Standards and Technology (NIST). NIST Library, 2014 edn (2014).

  • Van den Dool, H. & Kratz, P. D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatography 11, 463–471 (1963).

    Article 

    Google Scholar
     

  • Source link