September 7, 2024
Cartilage-like protein hydrogels engineered via entanglement – Nature

Cartilage-like protein hydrogels engineered via entanglement – Nature

  • Wainwright, S. A., Biggs, W. D., Currey, J. D. & Gosline, J. M. Mechanical Design in Organisms (Princeton Univ. Press, 1982).

  • Higuchi, H. Viscoelasticity and function of connectin/titin filaments in skinned muscle fibers. Adv. Biophys. 33, 159–171 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Linke, W. A., Popov, V. I. & Pollack, G. H. Passive and active tension in single cardiac myofibrils. Biophys. J. 67, 782–792 (1994).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayes, W. C. & Mockros, L. F. Viscoelastic properties of human articular cartilage. J. Appl. Physiol. 31, 562–568 (1971).

  • Temple, D. K., Cederlund, A. A., Lawless, B. M., Aspden, R. M. & Espino, D. M. Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends. BMC Musculoskelet. Disord. 17, 419 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williamson, A. K., Chen, A. C., Masuda, K., Thonar, E. J. & Sah, R. L. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J. Orthop. Res. 21, 872–880 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Kerin, A. J., Wisnom, M. R. & Adams, M. A. The compressive strength of articular cartilage. Proc. Inst. Mech. Eng. H 212, 273–280 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Almarza, A. J. & Athanasiou, K. A. Design characteristics for the tissue engineering of cartilaginous tissues. Ann. Biomed. Eng. 32, 2–17 (2004).

    PubMed 

    Google Scholar
     

  • Lv, S. et al. Designed biomaterials to mimic the mechanical properties of muscles. Nature 465, 69–73 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. et al. Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nat. Commun. 9, 620 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khoury, L. R., Shmilovich, N. J. & Popa, K. I. Study of biomechanical properties of protein-based hydrogels using force-clamp rheometry. Macromolecules 51, 1441–1452 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Jiang, Y. & Tuan, R. S. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat. Rev. Rheumatol. 11, 206–212 (2015).

    PubMed 

    Google Scholar
     

  • Treloar, L. R. G. The Physics of Rubber Elasticity (Oxford Univ. Press, 1975).

  • Gosline, J. et al. Elastic proteins: biological roles and mechanical properties. Phil. Trans. R. Soc. Lond. B 357, 121–132 (2002).

    CAS 

    Google Scholar
     

  • Li, Y., Xue, B. & Cao, Y. Synthetic protein hydrogels. ACS Macro Lett. 9, 512–524 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Elvin, C. M. et al. Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437, 999–1002 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McGann, C. L., Levenson, E. A. & Kiick, K. L. Resilin-based hybrid hydrogels for cardiovascular tissue engineering. Macromolecules 214, 203–213 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Fang, J. et al. Forced protein unfolding leads to highly elastic and tough protein hydrogels. Nat. Commun. 4, 2974 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • McCutchen, C. W. Lubrication of Joints,The Joints and Synovial Fluid Vol. 1, 437–483 (Academic, 1978).

  • Lu, X. L. & Mow, V. C. Biomechanics of articular cartilage and determination of material properties. Med. Sci. Sports Exerc. 40, 193–199 (2008).

    PubMed 

    Google Scholar
     

  • Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Reverse engineering of the giant muscle protein titin. Nature 418, 998–1002 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koga, N. et al. Principles for designing ideal protein structures. Nature 491, 222–227 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colby, R. H. Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rhol. Acta 49, 425–442 (2010).

    CAS 

    Google Scholar
     

  • Fancy, D. A. & Kodadek, T. Chemistry for the analysis of protein–protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl Acad. Sci. USA 96, 6020–6024 (1999).

  • Partlow, B. P., Applegate, M. B., Omenetto, F. G. & Kaplan, D. L. Dityrosine cross-linking in designing biomaterials. ACS Biomater. Sci. Eng. 2, 2108−2121 (2016).

  • Fang, J. & Li, H. A facile way to tune mechanical properties of artificial elastomeric proteins-based hydrogels. Langmuir 28, 8260–8265 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, C. P., Tang, H. Y., Carag, C., Speicher, D. W. & Discher, D. E. Forced unfolding of proteins within cells. Science 317, 663–666 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Partlow, B. P. et al. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 24, 4615–4624 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, H. et al. Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nat. Commun. 11, 4032 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minajeva, A., Kulke, M., Fernandez, J. M. & Linke, W. A. Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys. J. 80, 1442–1451 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    CAS 

    Google Scholar
     

  • Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Xu, L., Zhao, X., Xu, C. & Kotov, N. A. Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv. Mater. 30, 1703343 (2018).

  • Xu, L. et al. Conjoined-network rendered stiff and tough hydrogels from biogenic molecules. Sci. Adv. 5, eaau3442 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

  • Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huey, D. J., Hu, J. C. & Athanasiou, K. A. Unlike bone, cartilage regeneration remains elusive. Science 338, 917–921 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10, 432–463 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Hayami, T. et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 50, 1193–1206 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Leahy, D. J., Hendrickson, W. A., Aukhil, I. & Erickson, H. P. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258, 987–991 (1992).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yokota, M. et al. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel doublenetwork hydrogel. BMC Musculoskelet. Disord. 12, 49 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. et al. Biofabrication of a biomimetic supramolecular-polymer double network hydrogel for cartilage regeneration. Mater. Des. 189, 108492 (2020).

  • Okumura, K. I. K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13, 485–487 (2001).

    CAS 

    Google Scholar
     

  • Bin Imran, A. et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun. 5, 5124 (2014).

    ADS 

    Google Scholar
     

  • Liu, J. et al. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv. Mater. 29, 1605325 (2017).

  • Wang, J., Lin, L., Cheng, Q. & Jiang, L. A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel. Angew. Chem. Int. Edn 51, 4676–4680 (2012).

    CAS 

    Google Scholar
     

  • Sun, W. et al. Molecular engineering of metal coordination interactions for strong, tough, and fast-recovery hydrogels. Sci. Adv. 6, eaaz9531 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lillie, M. A., Chalmers, G. W. & Gosline, J. M. The effects of heating on the mechanical properties of arterial elastin. Connect. Tissue Res. 31, 23–35 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Bello, A. B., Kim, D., Kim, D., Park, H. & Lee, S. H. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng. Part B 26, 164–180 (2020).

    CAS 

    Google Scholar
     

  • Gao, J. et al. Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink. Adv. Healthc. Mater. 10, e2001404 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Tsai, C. C. et al. Enzyme-cross-linked gelatin hydrogel enriched with an articular cartilage extracellular matrix and human adipose-derived stem cells for hyaline cartilage regeneration of rabbits. ACS Biomater. Sci. Eng. 6, 5110–5119 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • van den Borne, M. P. et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in autologous chondrocyte implantation (ACI) and microfracture. Osteoarthritis Cartilage 15, 1397–1402 (2007).

    PubMed 

    Google Scholar
     

  • O’Driscoll, S. W., Keeley, F. W. & Salter, R. B. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J. Bone Joint Surg. Am. 70, 595–606 (1988).

    PubMed 

    Google Scholar
     

  • Stanish, W. D. et al. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J. Bone Joint Surg. Am. 95, 1640–1650 (2013).

    PubMed 

    Google Scholar
     

  • Cao, Y., Kuske, R. & Li, H. Direct observation of markovian behavior of the mechanical unfolding of individual proteins. Biophys. J. 95, 782–788 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. & Li, H. Polyprotein of GB1 is an ideal artificial elastomeric protein. Nat. Mater. 6, 109–114 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khoury, L. R. & Popa, I. Chemical unfolding of protein domains induces shape change in programmed protein hydrogels. Nat. Commun. 10, 5439 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, P. A., He, Y., Chen, Y., Orban, J. & Bryan, P. N. A minimal sequence code for switching protein structure and function. Proc. Natl Acad. Sci. USA 106, 21149–21154 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leahy, D. J., Aukhil, I. & Erickson, H. P. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155–164 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Source link