September 17, 2024
Deep crustal assimilation during the 2021 Fagradalsfjall Fires, Iceland – Nature

Deep crustal assimilation during the 2021 Fagradalsfjall Fires, Iceland – Nature

  • Self, S., Thordarson, T. & Widdowson, M. Gas fluxes from flood basalt eruptions. Elements 1, 283–287 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thordarson, T. & Self, S. The Laki (Skaftár fires) and Grímsvötn eruptions in 1783–1785. Bull. Volcanol. 55, 233–263 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Carracedo, J. C., Badiola, E. R. & Soler, V. The 1730–1736 eruption of Lanzarote, Canary Islands: a long, high-magnitude basaltic fissure eruption. J. Volcanol. Geotherm. Res. 53, 239–250 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Garcia, M. O., Pietruszka, A. J., Rhodes, J. M. & Swanson, K. Magmatic processes during the prolonged Pu’u ’O’o eruption of Kilauea Volcano, Hawaii. J. Petrol. 41, 967–990 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bindeman, I. N. et al. Diverse mantle components with invariant oxygen isotopes in the 2021 Fagradalsfjall eruption, Iceland. Nat. Commun. 13, 3737 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sigmundsson, F. et al. Deformation and seismicity decline before the 2021 Fagradalsfjall eruption. Nature 609, 523–528 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halldórsson, S. A. et al. Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland. Nature 609, 529–534 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schilling, J. G. Iceland mantle plume: geochemical study of Reykjanes Ridge. Nature 242, 565–571 (1973).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wolfe, C. J., Bjarnason, I., VanDecar, J. C. & Solomon, S. C. Seismic structure of the Iceland mantle plume. Nature 385, 245–247 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hilton, D. R., Grönvold, K., Macpherson, C. G. & Castillo, P. R. Extreme 3He/4He ratios in northwest Iceland: constraining the common component in mantle plumes. Earth Planet. Sci. Lett. 173, 53–60 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Murton, B. J., Taylor, R. N. & Thirlwall, M. F. Plume–ridge interaction: a geochemical perspective from the Reykjanes Ridge. J. Petrol. 43, 1987–2012 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sæmundsson, K., Sigurgeirsson, M. Á. & Friðleifsson, G. Ó. Geology and structure of the Reykjanes volcanic system, Iceland. J. Volcanol. Geotherm. Res. 391, 106501 (2020).

    Article 

    Google Scholar
     

  • Krmíček, L., Troll, V. R., Galiová, M. V., Thordarson, T. & Brabec, M. Trace element composition in olivine from the 2022 Meradalir eruption of the Fagradalsfjall Fires, SW-Iceland. Czech Polar Rep. 12, 222–231 (2022).


    Google Scholar
     

  • Kahl, M. et al. Deep magma mobilization years before the 2021 CE Fagradalsfjall eruption, Iceland. Geology 51, 184–188 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Flóvenz, Ó. G. et al. Cyclical geothermal unrest as a precursor to Iceland’s 2021 Fagradalsfjall eruption. Nat. Geosci. 15, 397–404 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Day, J. M. D. et al. Mantle source characteristics and magmatic processes during the 2021 La Palma eruption. Earth Planet. Sci. Lett. 597, 117793 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hofmann, A. W., Jochum, K. P., Seufert, M. & White, W. M. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet. Sci. Lett. 79, 33–45 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Macpherson, C. G., Hilton, D. R., Day, J. M. D., Lowry, D. & Grönvold, K. High-3He/4He, depleted mantle and low-δ18O, recycled oceanic lithosphere in the source of central Iceland magmatism. Earth Planet. Sci. Lett. 233, 411–427 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Skovgaard, A. C., Storey, M., Baker, J., Blusztajn, J. & Hart, S. R. Osmium–oxygen isotopic evidence for a recycled and strongly depleted component in the Iceland mantle plume. Earth Planet. Sci. Lett. 194, 259–275 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huppert, H. E. & Sparks, R. S. J. Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth Planet. Sci. Lett. 74, 371–386 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Devey, C. W. & Cox, K. G. Relationships between crustal contamination and crystallisation in continental flood basalt magmas with special reference to the Deccan Traps of the Western Ghats, India. Earth Planet. Sci. Lett. 84, 59–68 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Day, J. M. D. Hotspot volcanism and highly siderophile elements. Chem. Geol. 341, 50–74 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Larsen, L. M., Pedersen, A. K., Sundvoll, B. & Frei, R. Alkali picrites formed by melting of old metasomatized lithospheric mantle: Manitdlat Member, Vaigat Formation, Palaeocene of West Greenland. J. Petrol. 44, 3–38 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weir, N. R. et al. Crustal structure of the northern Reykjanes Ridge and Reykjanes Peninsula, southwest Iceland. J. Geophys. Res. Solid Earth 106, 6347–6368 (2001).

    Article 

    Google Scholar
     

  • Radu, I. B. et al. Water in clinopyroxene from the 2021 Geldingadalir eruption of the Fagradalsfjall Fires, SW-Iceland. Bull. Volcanol. 85, 31 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Day, J. M. D., Walker, R. J. & Warren, J. M. 186Os–187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochim. Cosmochim. Acta 200, 232–254 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blusztajn, J., Hart, S. R., Ravizza, G. & Dick, H. J. B. Platinum-group elements and Os isotopic characteristics of the lower oceanic crust. Chem. Geol. 168, 113–122 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peucker‐Ehrenbrink, B., Bach, W., Hart, S. R., Blusztajn, J. S. & Abbruzzese, T. Rhenium‐osmium isotope systematics and platinum group element concentrations in oceanic crust from DSDP/ODP Sites 504 and 417/418. Geochem. Geophys. Geosyst. 4, 8911 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Foulger, G. R. Older crust underlies Iceland. Geophys. J. Int. 165, 672–676 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Torsvik, T. H. et al. Continental crust beneath southeast Iceland. Proc. Natl Acad. Sci. 112, E1818–E1827 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dale, C. W. et al. Highly siderophile element behaviour accompanying subduction of oceanic crust: whole rock and mineral-scale insights from a high-pressure terrain. Geochim. Cosmochim. Acta 73, 1394–1416 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heinonen, J. S., Luttinen, A. V., Spera, F. J. & Bohrson, W. A. Deep open storage and shallow closed transport system for a continental flood basalt sequence revealed with Magma Chamber Simulator. Contrib. Mineral. Petrol. 174, 1–18 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gleeson, M. L., Lissenberg, C. J. & Antoshechkina, P. M. Porosity evolution of mafic crystal mush during reactive flow. Nat. Commun. 14, 3088 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thirlwall, M. F. et al. Low δ18O in the Icelandic mantle and its origins: evidence from Reykjanes Ridge and Icelandic lavas. Geochim. Cosmochim. Acta 70, 993–1019 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hartley, M. & Maclennan, J. Magmatic densities control erupted volumes in Icelandic volcanic systems. Front. Earth Sci. 6, 29 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Condomines, M. et al. Helium, oxygen, strontium and neodymium isotopic relationships in Icelandic volcanics. Earth Planet. Sci. Lett. 66, 125–136 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pedersen, G. B. et al. Lava flow hazard modelling during the 2021 Fagradalsfjall eruption, Iceland: applications of MrLavaLoba. Nat. Hazards Earth Syst. Sci. Discuss. 2022, 1–38 (2022).


    Google Scholar
     

  • Árnadóttir, T., Geirsson, H. & Jiang, W. Crustal deformation in Iceland: plate spreading and earthquake deformation. Jökull 58, 59–74 (2008).

    Article 

    Google Scholar
     

  • Momme, P., Óskarsson, N. & Keays, R. R. Platinum-group elements in the Icelandic rift system: melting processes and mantle sources beneath Iceland. Chem. Geol. 196, 209–234 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nicklas, R. W., Brandon, A. D., Waight, T. E., Puchtel, I. S. & Day, J. M. D. High-precision Pb and Hf isotope and highly siderophile element abundance systematics of high-MgO Icelandic lavas. Chem. Geol. 582, 120436 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Day, J. M. D., Peters, B. J. & Janney, P. E. Oxygen isotope systematics of South African olivine melilitites and implications for HIMU mantle reservoirs. Lithos 202, 76–84 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tait, K. T. & Day, J. M. D. Chondritic late accretion to Mars and the nature of shergottite reservoirs. Earth Planet. Sci. Lett. 494, 99–108 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Day, J. M. D., Waters, C. L., Schaefer, B. F., Walker, R. J. & Turner, S. Use of hydrofluoric acid desilicification in the determination of highly siderophile element abundances and Re‐Pt‐Os isotope systematics in mafic‐ultramafic rocks. Geostand. Geoanal. Res. 40, 49–65 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Meisel, T. & Moser, J. Platinum group element and rhenium concentrations in low abundance reference materials. Geostand. Geoanal. Res. 28, 233–250 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Shinotsuka, K. & Suzuki, K. Simultaneous determination of platinum group elements and rhenium in rock samples using isotope dilution inductively coupled plasma mass spectrometry after cation exchange separation followed by solvent extraction. Anal. Chim. Acta 603, 129–139 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Determination of platinum-group elements and Re-Os isotopes using ID-ICP-MS and N-TIMS from a single digestion after two-stage column separation. Geostand. Geoanal. Res. 38, 37–50 (2013).

    Article 

    Google Scholar
     

  • Chu, Z. et al. A comprehensive method for precise determination of Re, Os, Ir, Ru, Pt, Pd concentrations and Os isotopic compositions in geological samples. Geostand. Geoanal. Res. 39, 151–169 (2014).

    Article 

    Google Scholar
     

  • Day, J. M. D., Nutt, K. L., Mendenhall, B. & Peters, B. J. Temporally variable crustal contributions to primitive mantle-derived Columbia River Basalt Group magmas. Chem. Geol. 572, 120197 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Durkin, K., Day, J. M. D., Panter, K. S., Xu, J.-F. & Castillo, P. R. Petrogenesis of alkaline magmas across a continent to ocean transect, northern Ross Sea, Antarctica. Chem. Geol. 641, 121780 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mundl-Petermeier, A. et al. Temporal evolution of primordial tungsten-182 and 3He/4He signatures in the Iceland mantle plume. Chem. Geol. 525, 245–259 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martin, C. E. Osmium isotopic characteristics of mantle-derived rocks. Geochim. Cosmochim. Acta 55, 1421–1434 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pegram, W. J. & Allègre, C. J. Osmium isotopic compositions from oceanic basalts. Earth Planet. Sci. Lett. 111, 59–68 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roy-Barman, M. & Allègre, C. J. 187Os/186Os in oceanic island basalts: tracing oceanic crust recycling in the mantle. Earth Planet. Sci. Lett. 129, 145–161 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jackson, M. G. et al. Globally elevated titanium, tantalum, and niobium (TITAN) in ocean island basalts with high 3He/4He. Geochem. Geophys. Geosyst. 9, Q04027 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Debaille, V. et al. Primitive off-rift basalts from Iceland and Jan Mayen: Os-isotopic evidence for a mantle source containing enriched subcontinental lithosphere. Geochim. Cosmochim. Acta 73, 3423–3449 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brandon, A. D., Graham, D. W., Waight, T. & Gautason, B. 186Os and 187Os enrichments and high-3He/4He sources in the Earth’s mantle: evidence from Icelandic picrites. Geochim. Cosmochim. Acta 71, 4570–4591 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smit, Y. The Snaefellsnes Transect: A Geochemical Cross-section Through the Iceland Plume. PhD thesis, Open University (2004).

  • Reisberg, L. et al. Os isotope systematics in ocean island basalts. Earth Planet. Sci. Lett. 120, 149–167 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eiler, J. M., Grönvold, K. & Kitchen, N. Oxygen isotope evidence for the origin of chemical variations in lavas from Theistareykir volcano in Iceland’s northern volcanic zone. Earth Planet. Sci. Lett. 184, 269–286 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Slater, L., McKenzie, D., Gronvold, K. & Shimizu, N. Melt generation and movement beneath Theistareykir, NE Iceland. J. Petrol. 42, 321–354 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Breddam, K. Kistufell: primitive melt from the Iceland mantle plume. J. Petrol. 43, 345–373 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peate, D. W. et al. Historic magmatism on the Reykjanes Peninsula, Iceland: a snap-shot of melt generation at a ridge segment. Contrib. Mineral. Petrol. 157, 359–382 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Day, J. M. D., Pearson, D. G., Macpherson, C. G., Lowry, D. & Carracedo, J. C. Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochim. Cosmochim. Acta 74, 6565–6589 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luguet, A. et al. Enriched Pt-Re-Os isotope systematics in plume lavas explained by metasomatic sulfides. Science 319, 453–456 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kempton, P. D. & Hunter, A. G. A Sr-, Nd-, Pb-, O-isotope study of plutonic rocks from MARK, Leg 153: implications for mantle heterogeneity and magma chamber processes. Ocean Drilling Program Scientific Results Leg 153 – Mid-Atlantic Ridge, 305–319 (1997).

  • Coogan, L. A. The lower oceanic crust. Treatise Geochem. 2, 497–541 (2014).

    Article 

    Google Scholar
     

  • Source link