April 24, 2024
Dislocation-induced stop-and-go kinetics of interfacial transformations – Nature

Dislocation-induced stop-and-go kinetics of interfacial transformations – Nature

  • Howe, J. M., Pond, R. C. & Hirth, J. P. The role of disconnections in phase transformations. Prog. Mater Sci. 54, 792–838 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Ikuhara, Y. & Pirouz, P. High resolution transmission electron microscopy studies of metal/ceramics interfaces. Microsc. Res. Tech. 40, 206–241 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Hirth, J. P. & Mitchell, T. E. The role of interface structure in oxidation reactions. Acta Mater. 56, 5701–5707 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ernst, F. Metal–oxide interfaces. Mat. Sci. Eng. R 14, 97–156 (1995).

    Article 

    Google Scholar
     

  • Du Plessis, J. & Van der Merwe, J. On pointed minima in the interfacial energy of bicrystal systems. Phil. Mag. 11, 43–51 (1965).

    ADS 
    Article 

    Google Scholar
     

  • Pieraggi, B., Rapp, R. A., van Loo, F. J. J. & Hirth, J. P. Interfacial dynamics in diffusion-driven phase transformations. Acta Metall. Mater. 38, 1781–1788 (1990).

    CAS 
    Article 

    Google Scholar
     

  • Zou, L. F. et al. Dislocation nucleation facilitated by atomic segregation. Nat. Mater. 17, 56–63 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • LaGrow, A. P., Ward, M. R., Lloyd, D. C., Gai, P. L. & Boyes, E. D. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 139, 179–185 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Zheng, H. M. et al. Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wang, C. M., Thevuthasan, S., Gao, F., McCready, D. E. & Chambers, S. A. The characteristics of interface misfit dislocations for epitaxial α-Fe2O3 on α-Al2O3(0001). Thin Solid Films 414, 31–38 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Stach, E., Schwarz, K., Hull, R., Ross, F. & Tromp, R. New mechanism for dislocation blocking in strained layer epitaxial growth. Phys. Rev. Lett. 84, 947–950 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Muller, D. A. et al. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758–761 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hull, D. & Bacon, D. J. Introduction to Dislocations (Butterworth-Heinemann, 2001).

  • Bollmann, W. Crystal Defects and Crystalline Interfaces (Springer-Verlag, 1970).

  • Li, L. Z., Xie, L. & Pan, X. Q. Real-time studies of ferroelectric domain switching: a review. Rep. Prog. Phys. 82, 126502 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hirth, J. P., Pieraggi, B. & Rapp, R. A. The role of interface dislocations and ledges as sources/sinks for point defects in scaling reactions. Acta Metall. Mater. 43, 1065–1073 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Hirth, J. Ledges and dislocations in phase transformations. Metall. Mater. Trans. A 25, 1885–1894 (1994).

    Article 

    Google Scholar
     

  • Sinclair, R. & Mohamed, H. A. Lattice imaging study of a martensite-austenite interface. Acta Metall. 26, 623–628 (1978).

    CAS 
    Article 

    Google Scholar
     

  • McGibbon, A. J., Pennycook, S. J. & Angelo, J. E. Direct observation of dislocation core structures in CdTe/GaAs (001). Science 269, 519–521 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ross, F. M. & Minor, A. M. in Springer Handbook of Microscopy (eds Hawkes, P. W. & Spence, J. C. H.) 101–187 (Springer, 2019).

  • Stirman, J. N. & Crozier, P. A. Atomic-scale imaging of asymmetric Lomer dislocation cores at the Ge/Si(001) heterointerface. Appl. Phys. Lett. 84, 2530–2532 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gao, W. P., Sivaramakrishnan, S., Wen, J. G. & Zuo, J. M. Direct observation of interfacial Au atoms on TiO2 in three dimensions. Nano Lett. 15, 2548–2554 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Minor, A. M. et al. A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, 697–702 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Oh, S. H. et al. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat. Mater. 8, 95–100 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kacher, J., Eftink, B. P. & Robertson, I. M. Handbook of Mechanics of Materials 1–37 (Springer, 2018).

  • Gutekunst, G., Mayer, J. & Rühle, M. The niobium/sapphire interface: structural studies by HREM. Scr. Metall. Mater. 31, 1097–1102 (1994).

    CAS 
    Article 

    Google Scholar
     

  • Sasaki, T. et al. Atomic and electronic structures of Ni/YSZ (111) interface. Mater. Trans. 45, 2137–2143 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Mogck, S., Kooi, B. & De Hosson, J. T. M. Influence of metal–oxide interfaces on L12 ordering in Cu3Pd. Acta Mater. 52, 4651–4658 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sun, X. H. et al. Surface-reaction induced structural oscillations in the subsurface. Nat. Commun. 11, 305 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sun, X. H. et al. Atomic-scale mechanism of unidirectional oxide growth. Adv. Funct. Mater. 30, 1906504 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article 

    Google Scholar
     

  • Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. & Joannopoulos, A. J. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Source link