November 29, 2022

Emergent charge order in pressurized kagome superconductor CsV3Sb5 – Nature

  • Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Liang, Z. et al. Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021).

    CAS 

    Google Scholar
     

  • Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Luo, H. et al. Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KV3Sb5. Nat. Commun. 13, 273 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mielke, C. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, K. Y. et al. Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure. Phys. Rev. Lett. 126, 247001 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Evidence of a hidden flux phase in the topological kagome metal CsV3Sb5. Preprint at https://arxiv.org/abs/2107.10714 (2021).

  • Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Svistunov, B. V., Babaev, E. S. & Prokof’ev, N. V. Superfluid States of Matter (CRC Press, 2015).

  • Liu, X., Chong, Y. X., Sharma, R. & Davis, J. C. S. Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide. Science 372, 1447–1452 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ko, W.-H., Lee, P. A. & Wen, X.-G. Doped kagome system as exotic superconductor. Phys. Rev. B. 79, 214502 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B. 85, 144402 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B. 87, 115135 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Distinctive momentum dependent charge-density-wave gap observed in CsV3Sb5 superconductor with topological kagome lattice. Preprint at https://arxiv.org/abs/2104.05556 (2021).

  • Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Theory of the charge density wave in AV3Sb5 kagome metals. Phys. Rev. B. 104, 214513 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). Sci. Adv. 8, eabl4108 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Denner, M. M., Thomale, R. & Neupert, T. Analysis of charge order in the kagome metal AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 217601 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Park, T., Ye, M. & Balents, L. Electronic instabilities of kagome metals: saddle points and Landau theory. Phys. Rev. B. 104, 035142 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, Y.-P. & Nandkishore, R. M. Complex charge density waves at Van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals AV3Sb5 (A = K, Rb, Cs). Phys. Rev. B. 104, 045122 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mu, C. et al. S-wave superconductivity in kagome metal CsV3Sb5 revealed by 121/123Sb NQR and 51V NMR measurements. Chin. Phys. Lett. 38, 077402 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Song, D. et al. Orbital ordering and fluctuations in a kagome superconductor CsV3Sb5. Sci. China-Phys. Mech. Astron. 65, 247462 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Q., Hücker, M., Gu, G. D., Tsvelik, A. M. & Tranquada, J. M. Two-dimensional superconducting fluctuations in stripe-ordered La1.875Ba0.125CuO4. Phys. Rev. Lett. 99, 067001 (2007).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Ning, F. L. et al. Contrasting spin dynamics between underdoped and overdoped Ba(Fe1−xCox)2As2. Phys. Rev. Lett. 104, 037001 (2010).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou, R., Xing, L. Y., Wang, X. C., Jinz, C. Q. & Zheng, G.-Q. Orbital order and spin nematicity in the tetragonal phase of the electron-doped iron pnictides NaFe1−xCoxAs. Phys. Rev. B. 93, 060502 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kenney, E. M., Ortiz, B. R., Wang, C., Wilson, S. D. & Graf, M. J. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys. Condens. Matter 33, 235801 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hebel, L. C. & Slichter, C. P. Nuclear spin relaxation in normal and superconducting aluminum. Phys. Rev. 113, 1504–1519 (1959).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Curro, N. J. Nuclear magnetic resonance in the heavy fermion superconductors. Rep. Prog. Phys. 72, 026502 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Uchida, S. Ubiquitous charge order correlations in high-temperature superconducting cuprates. J. Phys. Soc. Jpn 90, 111001 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kitagawa, K. et al. Space efficient opposed-anvil high-pressure cell and its application to optical and NMR measurements up to 9 GPa. J. Phys. Soc. Jpn 79, 024001 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Yokogawa, K., Murata, K., Yoshino, H. & Aoyama, S. Solidification of high-pressure medium Daphne 7373. Jpn J. Appl. Phys. 46, 3636 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Torikachvili, M. S., Kim, S. K., Colombier, E., Bud’ko, S. L. & Canfield, P. C. Solidification and loss of hydrostaticity in liquid media used for pressure measurements. Rev. Sci. Instrum. 86, 123904 (2015).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Altarawneh, M. M., Mielke, C. H. & Brooks, J. S. Proximity detector circuits: an alternative to tunnel diode oscillators for contactless measurements in pulsed magnetic field environments. Rev. Sci. Instrum. 80, 066104 (2009).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Ghannadzadeh, S. et al. Measurement of magnetic susceptibility in pulsed magnetic fields using a proximity detector oscillator. Rev. Sci. Instrum. 82, 113902 (2011).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Ahmida, M. A. et al. Charge fluctuations across the pressure-induced quantum phase transition in EuCu2(Ge1−xSix)2. Phys. Rev. B. 101, 205127 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eckberg, C. et al. Sixfold enhancement of superconductivity in a tunable electronic nematic system. Nat. Phys. 16, 346–350 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McMillan, W. L. Landau theory of charge-density waves in transition-metal dichalcogenides. Phys. Rev. B. 12, 1187–1196 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, J. et al. Possible star-of-David pattern charge density wave with additional modulation in the kagome superconductor CsV3Sb5. NPJ Quantum Mater. 7, 30 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, S. & Wang, Z. Doped orbital Chern insulator, Chern Fermi pockets, and chiral topological pair density wave in kagome superconductors. Preprint at https://arxiv.org/abs/2110.06266 (2022).

  • Yu, J. et al. Evolution of electronic structure in pristine and Rb-reconstructed surfaces of kagome metal RbV3Sb5. Nano Lett. 22, 918–925 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. 18, 265–270 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Electronic nature of chiral charge order in the kagome superconductor CsV3Sb5. Phys. Rev. B 104, 075148 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moriya, T. Nuclear magnetic relaxation in antiferromagnetics. Prog. Theor. Phys. 16, 23–44 (1956).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, J.-F., Liu, K. & Lu, Z.-Y. First-principles study of the double-dome superconductivity in the kagome material CsV3Sb5 under pressure. Phys. Rev. B. 104, 195130 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Si, J.-G., Lu, W.-J., Sun, Y.-P., Liu, P.-F. & Wang, B.-T. Charge density wave and pressure-dependent superconductivity in the kagome metal CsV3Sb5: a first-principles study. Phys. Rev. B. 105, 024517 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maeda, S., Matano, K. & Zheng, G. Q. Fully gapped spin-singlet superconductivity in noncentrosymmetric PbTaSe2: 207Pb nuclear magnetic resonance study. Phys. Rev. B. 97, 184510 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, J. Z., Wu, W. K., Wang, Y. L. & Yang, S. A. Electronic correlations in the normal state of the kagome superconductor KV3Sb5. Phys. Rev. B. 103, L241117 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Di Sante, D. et al. Electronic correlations and universal long-range scaling in kagome metals. Preprint at https://arxiv.org/abs/2203.05038 (2022).

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kitagawa, S., Ishida, K., Nakano, K., Yajima, T. & Kageyama, H. S-wave superconductivity in superconducting BaTi2Sb2O revealed by 121/123Sb-NMR/nuclear quadrupole resonance measurements. Phys. Rev. B. 87, 060510(R) (2013).

    Article 
    ADS 

    Google Scholar
     

  • Source link