April 24, 2024

Enantiomer-dependent immunological response to chiral nanoparticles – Nature

  • 1.

    Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    CAS 

    Google Scholar
     

  • 2.

    Copeland, L. O. & McDonald, M. B. in Principles of Seed Science and Technology 59–110 (Springer, 1999).

  • 3.

    Zhang, Q. et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 365, 1475–1478 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Guerrero-Martínez, A., Alonso-Gómez, J. L., Auguié, B., Cid, M. M. & Liz-Marzán, L. M. From individual to collective chirality in metal nanoparticles. Nano Today 6, 381–400 (2011).


    Google Scholar
     

  • 5.

    Kuznetsova, V. A. et al. Enantioselective cytotoxicity of ZnS:Mn quantum dots in A549 cells. Chirality 29, 403–408 (2017).

    CAS 

    Google Scholar
     

  • 6.

    Sun, M. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 10, 821–830 (2018).

    CAS 

    Google Scholar
     

  • 7.

    Kotov, N. A. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).

    CAS 

    Google Scholar
     

  • 8.

    Cagno, V. et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater. 17, 195–203 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Wang, D. et al. Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Sci. Immunol. 4, eaau6584 (2019).

    CAS 

    Google Scholar
     

  • 10.

    Gérard, V. A. et al. Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles. Chem. Commun. 47, 7383 (2011).


    Google Scholar
     

  • 11.

    Yeom, J. et al. Chiromagnetic nanoparticles and gels. Science 359, 309–314 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Ma, W. et al. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 4, 2689 (2013).

    ADS 

    Google Scholar
     

  • 13.

    Zheng, G. et al. Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids. Angew. Chem. Int. Edn 57, 16452–16457 (2018).

    CAS 

    Google Scholar
     

  • 14.

    Chen, W. et al. Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials. Nano Lett., 9, 2153–2159 (2009).

  • 15.

    Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Molotsky, T., Tamarin, T., Ben Moshe, A., Markovich, G. & Kotlyar, A. B. Synthesis of chiral silver clusters on a DNA template. J. Phys. Chem. C 114, 15951–15954 (2010).

    CAS 

    Google Scholar
     

  • 17.

    Im, S. W. et al. Chiral surface and geometry of metal nanocrystals. Adv. Mater. 32, 1905758 (2020).

    CAS 

    Google Scholar
     

  • 18.

    Wang, J. et al. Physical activation of innate immunity by spiky particles. Nat. Nanotechnol. 13, 1078–1086 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Geva, M., Frolow, F., Eisenstein, M. & Addadi, L. Antibody recognition of chiral surfaces. Enantiomorphous crystals of leucine-leucine-tyrosine. J. Am. Chem. Soc. 125, 696–704 (2003).

    CAS 

    Google Scholar
     

  • 20.

    Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    CAS 

    Google Scholar
     

  • 21.

    del Pino, P. et al. Protein corona formation around nanoparticles—from the past to the future. Mater. Horiz. 1, 301–313 (2014).


    Google Scholar
     

  • 22.

    Wang, X. et al. Chiral surface of nanoparticles determines the orientation of adsorbed transferrin and its interaction with receptors. ACS Nano 11, 4606–4616 (2017).

    CAS 

    Google Scholar
     

  • 23.

    Kim, J.-Y. et al. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 141, 11739–11744 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Yeom, J. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 14, 66–72 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Ou, Z., Wang, Z., Luo, B., Luijten, E. & Chen, Q. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 19, 450–455 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Karst, J. et al. Chiral scatterometry on chemically synthesized single plasmonic nanoparticles. ACS Nano 13, 8659–8668 (2019).

    CAS 

    Google Scholar
     

  • 27.

    González-Rubio, G. et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 358, 640–644 (2017).

    ADS 

    Google Scholar
     

  • 28.

    Saito, K. & Tatsuma, T. Chiral plasmonic nanostructures fabricated by circularly polarized light. Nano Lett. 18, 3209–3212 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Lee, H.-E. et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Zhang, Q. et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13, 1182–1190 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Pelliccia, M. et al. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nat. Commun. 7, 13520 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Xia, Y. et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat. Mater. 17, 187–194 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Langenhan, T., Aust, G. & Hamann, J. Sticky signaling—adhesion class G protein-coupled receptors take the stage. Sci. Signal. 6, re3 (2013).


    Google Scholar
     

  • 34.

    Oldham, W. M. & Hamm, H. E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71 (2008).

    CAS 

    Google Scholar
     

  • 35.

    Ferguson, S. M. & De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 13, 75–88 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Richards, D. M. & Endres, R. G. Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis. Proc. Natl Acad. Sci. USA 113, 6113–6118 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Mahmoudi, M., Azadmanesh, K., Shokrgozar, M. A., Journeay, W. S. & Laurent, S. Effect of nanoparticles on the cell life cycle. Chem. Rev. 111, 3407–3432 (2011).

    CAS 

    Google Scholar
     

  • 38.

    Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Ohta, S., Glancy, D. & Chan, W. C. W. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science 351, 841–845 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Naur, P. et al. Ionotropic glutamate-like receptor 2 binds D-serine and glycine. Proc. Natl Acad. Sci. USA 104, 14116–14121 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Cobb, M. H. & Ross, E. M. in Mol. Biol. Cell 6th edn (eds Alberts, B. et al.) 589–643 (Garland, 2002).

  • 42.

    Muñoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Ranade, S. S., Syeda, R. & Patapoutian, A. Mechanically activated ion channels. Neuron 87, 1162–1179 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Galic, M. et al. External push and internal pull forces recruit curvature-sensing N-BAR domain proteins to the plasma membrane. Nat. Cell Biol. 14, 874–881 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Chen, L. et al. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 14, 7201–7206 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    ADS 
    CAS 

    Google Scholar
     

  • Source link