April 25, 2024

Exploding and weeping ceramics – Nature

  • 1.

    Chen, X., Srivastava, V., Dabade, V. & James, R. D. Study of the cofactor conditions: conditions of supercompatibility between phases. J. Mech. Phys. Solids 61, 2566–2587 (2013).

    MathSciNet 
    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 2.

    Chluba, C. et al. Ultralow-fatigue shape memory alloy films. Science 348, 1004–1007 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 3.

    Delville, R. et al. Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Philos. Mag. 90, 177–195 (2010).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 4.

    Della Porta, F. On the cofactor conditions and further conditions of supercompatibility between phases. J. Mech. Phys. Solids 122, 27–53 (2019).

    MathSciNet 
    Article 
    ADS 

    Google Scholar
     

  • 5.

    Niitsu, K., Kimura, Y., Omori, T. & Kainuma, R. Cryogenic superelasticity with large elastocaloric effect. NPG Asia Mater. 10, e457 (2018).

    Article 

    Google Scholar
     

  • 6.

    Zarnetta, R. et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20, 1917–1923 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Gu, H., Bumke, L., Chluba, C., Quandt, E. & James, R. D. Phase engineering and supercompatibility of shape memory alloys. Mater. Today 21, 265–277 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Jetter, J. et al. Tuning crystallographic compatibility to enhance shape memory in ceramics. Phys. Rev. Mater. 3, 93603 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Wegner, M., Gu, H., James, R. D. & Quandt, E. Correlation between phase compatibility and efficient energy conversion in Zr-doped barium titanate. Sci. Rep. 10, 3496 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 10.

    Liang, Y. G. et al. Tuning the hysteresis of a metal-insulator transition via lattice compatibility. Nat. Commun. 11, 3539 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 11.

    Pang, E. L., McCandler, C. A. & Schuh, C. A. Reduced cracking in polycrystalline ZrO2-CeO2 shape-memory ceramics by meeting the cofactor conditions. Acta Mater. 177, 230–239 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 12.

    Lai, A., Du, Z., Gan, C. L. & Schuh, C. A. Shape memory and superelastic ceramics at small scales. Science 341, 1505–1508 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 13.

    Kohn, R. V. & Müller, S. Branching of twins near an austenite—twinned-martensite interface. Philos. Mag. A 66, 697–715 (1992).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 14.

    Burkart, M. W. & Read, T. A. Diffusionless phase change in the indium-thallium system. Trans. Am. Inst. Min. Metall. Eng. 197, 1516–1524 (1953).


    Google Scholar
     

  • 15.

    Ball, J. M. & James, R. D. in Analysis and Continuum Mechanics: a Collection of Papers Dedicated to J. Serrin on His Sixtieth Birthday 647–686 (Springer, 1989).

  • 16.

    Yang, S. et al. A jumping shape memory alloy under heat. Sci. Rep. 6, 21754 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 17.

    Yadava, K. et al. Extraordinary anisotropic thermal expansion in photosalient crystals. IUCrJ 7, 83–89 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. Mechanically responsive molecular crystals. Chem. Rev. 115, 12440–12490 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Tong, F. et al. Photomechanical molecular crystals and nanowire assemblies based on the [2+2] photodimerization of a phenylbutadiene derivative. J. Mater. Chem. C 8, 5036–5044 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Chandrasekar, S. & Chaudhri, M. M. The explosive disintegration of Prince Rupert’s drops. Philos. Mag. B 70, 1195–1218 (1994).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 21.

    Gibbs, J.W. On the equilibrium of heterogeneous substances Vol. 1 (Longmans Green and Co., 1879)

  • 22.

    Chen, X. et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 592, 712–716 (2021).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 23.

    Hayakawa, M., Kuntani, N. & Oka, M. Structural study on the tetragonal to monoclinic transformation in arc-melted ZrO2-2mol.%Y2O3—I. Experimental observations. Acta Metall. 37, 2223–2228 (1989).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Hayakawa, M. & Oka, M. Structural study on the tetragonal to monoclinic transformation in arc-melted ZrO2-2mol.%Y2O3—II. Quantitative analysis. Acta Metall. 37, 2229–2235 (1989).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Chen, X. & Song, Y. Structural Phase Transformation Web Tools (StrucTrans, 2014); http://www.structrans.org

  • 26.

    Ball, J. M. & James, R. D. A characterization of plane strain. Proc. Math. Phys. Sci. 432, 93–99 (1991).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Source link