September 7, 2024
Extreme flow simulations reveal skeletal adaptations of deep-sea sponges – Nature

Extreme flow simulations reveal skeletal adaptations of deep-sea sponges – Nature

  • 1.

    Owen, R. Description of a new genus and species of sponge (Euplectella aspergillum, O.). Trans. Zool. Soc. Lond. 3, 203–215 (1849).


    Google Scholar
     

  • 2.

    Report on the Scientific Results of the Voyage of H.M.S. Challenger During the Years 1873–76 — Under the Command of Captain George S. Nares, R.N., F.R.S. and Captain Frank Turle Thomson, R.N. Vol. XXI, Zoology, Plates (Neill, 1887); https://archive.org/details/reportonscientif21grea/page/n13/mode/2up (2008).

  • 3.

    Weaver, J. C. et al. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J. Struct. Biol. 158, 93–106 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Aizenberg, J. et al. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Monn, M. A., Weaver, J. C., Zhang, T., Aizenberg, J. & Kesari, H. New functional insights into the internal architecture of the laminated anchor spicules of Euplectella aspergillum. Proc. Natl Acad. Sci. USA 112, 4976–4981 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Fernandes, M. C., Aizenberg, J., Weaver, J. C. & Bertoldi, K. Mechanically robust lattices inspired by deep-sea sponges. Nat. Mater. 20, 237–241 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Succi, S. The Lattice Boltzmann Equation: For Complex States of Flowing Matter (Oxford Univ. Press, 2018).

  • 8.

    Kanari, S.-I., Kobayashi, C. & Ishikawa, T. An estimate of the velocity and stress in the deep ocean bottom boundary layer. J. Fac. Sci. Hokkaido Univ. Ser. 7 Geophys. 9, 1–16 (1991).


    Google Scholar
     

  • 9.

    Doron, P., Bertuccioli, L., Katz, J. & Osborn, T. R. Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J. Phys. Oceanogr. 31, 2108–2134 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    26th ITTC Specialist Committee on Uncertainty Analysis (eds). In Proc. International Towing Tank Conf. Paper 7.5-02-01-03 https://ittc.info/media/4048/75-02-01-03.pdf (ITTC, 2011).

  • 11.

    Yahel, G., Eerkes-Medrano, D. I. & Leys, S. P. Size independent selective filtration of ultraplankton by hexactinellid glass sponges. Aquat. Microb. Ecol. 45, 181–194 (2006).

    Article 

    Google Scholar
     

  • 12.

    Schulze, F. E. XXIV.—On the structure and arrangement of the soft parts in Euplectella aspergillum. Earth Environ. Sci. Trans. R. Soc. Edinb. 29, 661–673 (1880).

    Article 

    Google Scholar
     

  • 13.

    Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Coveney, P. V., Boon, J. P. & Succi, S. Bridging the gaps at the physics-chemistry-biology interface. Phil. Trans. R. Soc. A 374, 20160335 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 15.

    Succi, S. et al. Towards exascale lattice Boltzmann computing. Comput. Fluids 181, 107–115 (2019).

    MathSciNet 
    Article 

    Google Scholar
     

  • 16.

    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (Springer Science and Business Media, 2013).

  • 17.

    Marconi100, the new accelerated system. https://www.hpc.cineca.it/hardware/marconi100 (SuperComputing Applications and Innovation, 2020).

  • 18.

    Reitner, J. & Mehl, D. Early Paleozoic diversification of sponges; new data and evidences. Geol.-paläontol. Mitt. Innsbruck 20, 335–347 (1995).


    Google Scholar
     

  • 19.

    Moore, T. J. XXVIII.—On the habitat of the Regadera (watering-pot) or Venus’s flower-basket (Euplectella aspergillum, Owen). J. Nat. Hist. 3, 196–199 (1869).


    Google Scholar
     

  • 20.

    Leys, S. P., Mackie, G. O. & Reiswig, H. M. The biology of glass sponges. Adv. Mar. Biol. 52, 1–145 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Gray, J. E. LXIV.—Venus’s flower-basket (Euplectella speciosa). Ann. Mag. Nat. Hist. 18, 487–490 (1866).

    Article 

    Google Scholar
     

  • 22.

    Saito, T., Uchida, I. & Takeda, M. Skeletal growth of the deep-sea hexactinellid sponge Euplectella oweni, and host selection by the symbiotic shrimp Spongicola japonica (Crustacea: Decapoda: Spongicolidae). J. Zool. 258, 521–529 (2002).

    Article 

    Google Scholar
     

  • 23.

    Chree, C. Recent advances in our knowledge of silicon and of its relations to organised structures. Nature 81, 206–208 (1909).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Woesz, A. et al. Micromechanical properties of biological silica in skeletons of deep-sea sponges. J. Mater. Res. 21, 2068–2078 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Monn, M. A., Vijaykumar, K., Kochiyama, S. & Kesari, H. Lamellar architectures in stiff biomaterials may not always be templates for enhancing toughness in composites. Nat. Commun. 11, 373 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Nayar, K. G., Sharqawy, M. H. & Banchik, L. D. Thermophysical properties of seawater: a review and new correlations that include pressure dependence. Desalination 390, 1–24 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Vogel, S. Current-induced flow through living sponges in nature. Proc. Natl Acad. Sci. USA 74, 2069–2071 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Prandtl, L. & Tietjens, O. G. Applied Hydro- and Aeromechanics (transl. Den Hartog, J. P.) (Dover Publications, 1957).

  • 29.

    Tritton, D. J. Physical Fluid Dynamics 2nd edn Ch. 21 (Clarendon, 1988).

  • 30.

    Gualtieri, P., Casciola, C. M., Benzi, R., Amati, G. & Piva, R. Scaling laws and intermittency in homogeneous shear flow. Phys. Fluids 14, 583–596 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Koehl, M. A. R. How do benthic organisms withstand moving water? Am. Zool. 24, 57–70 (1984).

    Article 

    Google Scholar
     

  • 32.

    Yahel, G., Whitney, F., Reiswig, H. M., Eerkes-Medrano, D. I. & Leys, S. P. In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate fjord with a remotely operated submersible. Limnol. Oceanogr. 52, 428–440 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Hunt, J. C. R., Wray, A. & Moin, P. Eddies, Stream, and Convergence Zones in Turbulent Flows. Report CTR-S88 (Center for Turbulence Research, 1988).

  • 34.

    Haller, G. An objective definition of a vortex. J. Fluid Mech. 525, 1–26 (2005).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 35.

    Krastev, V. K., Amati, G., Succi, S. & Falcucci, G. On the effects of surface corrugation on the hydrodynamic performance of cylindrical rigid structures. Eur. Phys. J. E 41, 95 (2018).

    Article 

    Google Scholar
     

  • 36.

    Kawamura, T., Takami, H. & Kuwahara, K. Computation of high Reynolds number flow around a circular cylinder with surface roughness. Fluid Dyn. Res. 1, 145 (1986).

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Hanchi, S., Askovic, R. & Ta Phuoc, L. Numerical simulation of a flow around an impulsively started radially deforming circular cylinder. Int. J. Numer. Methods Fluids 29, 555–573 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Sahin, M. & Owens, R. G. A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder. Phys. Fluids 16, 1305–1320 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    Fujisawa, N., Tanahashi, S. & Srinivas, K. Evaluation of pressure field and fluid forces on a circular cylinder with and without rotational oscillation using velocity data from PIV measurement. Meas. Sci. Technol. 16, 989–996 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Henderson, R. D. Detail of the drag curve near the onset of vortex shedding. Phys. Fluids 7, 2102–2104 (1995).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Posdziech, O. & Grundmann, R. Numerical simulation of the flow around an infinitely long circular cylinder in the transition regime. Theor. Comput. Fluid Dyn. 15, 121–141 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Succi, S. The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (Oxford Univ. Press, 2001).

  • 43.

    Norberg, C. An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287–316 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 44.

    Krüger, T. et al. The Lattice Boltzmann Method (Springer International, 2017).

  • 45.

    Montessori, A. & Falcucci, G. Lattice Boltzmann Modeling of Complex Flows for Engineering Applications (Morgan and Claypool, 2018).

  • 46.

    Falcucci, G. et al. Lattice Boltzmann methods for multiphase flow simulations across scales. Commun. Comput. Phys. 9, 269–296 (2011).

    Article 

    Google Scholar
     

  • 47.

    Johnson, R. W. (ed.) Handbook of Fluid Dynamics (CRC, 2016).

  • Source link