April 24, 2024
Fast charging of energy-dense lithium-ion batteries – Nature

Fast charging of energy-dense lithium-ion batteries – Nature

  • Wu, Y. et al. An empirical model for the design of batteries. ACS Energy Lett. 5, 807–816 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Deng, J., Bae, C., Denlinger, A. & Miller, T. Electric vehicles batteries: requirements and challenges. Joule 4, 511–515 (2020).

    Article 

    Google Scholar
     

  • Cheeseman, H. Fast-charging Li-metal batteries. ARPA-E https://arpa-e.energy.gov/open-2021/webinars (2021).

  • Howell, D. et al. Enabling fast charging: a technology gap assessment. US Department of Energy https://www.energy.gov/sites/default/files/2017/10/f38/XFC%20Technology%20Gap%20Assessment%20Report_FINAL_10202017.pdf (2017).

  • Zaghib, K. et al. Safe and fast-charging Li-ion battery with long shelf life for power applications. J. Power Sources 196, 3949–3954 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Colclasure, A. M. et al. Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells. Electrochim. Acta 337, 135854 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Logan, E. R. et al. Ester-based electrolytes for fast charging of energy dense lithium-ion batteries. J. Phys. Chem. C 124, 12269–12280 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Liu, T., Yang, X., Ge, S., Leng, Y. & Wang, C. Y. Ultrafast charging of energy-dense lithium-ion batteries for urban air mobility. eTransportation 7, 100103 (2021).

    Article 

    Google Scholar
     

  • Du, Z., Wood Iii, D. L. & Belharouak, I. Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes. Electrochem. Comm. 103, 109–113 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Chen, K. et al. Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. J. Power Sources 471, 228475 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yang, X.-G. et al. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries. Joule 3, 3002–3019 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Han, J.-G. et al. An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes. J. Power Sources 446, 227366 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Gonzalez, A. F., Yang, N.-H. & Liu, R.-S. Silicon anode design for lithium-ion batteries: progress and perspectives. J. Phys. Chem. C 121, 27775–27787 (2017).

    Article 

    Google Scholar
     

  • Lee, S. K., McDowell, M. T., Choi, J. W. & Cui, Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 11, 3034–3039 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Son, I. H. et al. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities. Nat. Commun. 8, 1561 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, B. et al. Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 13, 2307–2315 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, N., Chae, S., Ma, J., Ko, M. & Cho, J. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat. Commun. 8, 812 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McBrayer, J. D. et al. Calendar aging of silicon-containing batteries. Nat. Energy 6, 866–872 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Masias, A., Marcicki, J. & Paxton, W. A. Opportunities and challenges of batteries in automotive applications. ACS Energy Lett. 6, 621–630 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zheng, J. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Peng, Z. et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 30, 2001285 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Leng, Y. et al. Fast charging of energy-dense lithium metal batteries in localized ether-based highly concentrated electrolytes. J. Electrochem. Soc. 168, 060548 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, T., Ge, S., Yang, X.-G. & Wang, C.-Y. Effect of thermal environments on fast charging Li-ion batteries. J. Power Sources 511, 230466 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Keil, J. et al. Linear and nonlinear aging of lithium-ion cells investigated by electrochemical analysis and in-situ neutron diffraction linear and nonlinear aging of lithium-ion cells investigated by electrochemical analysis and in-situ neutron diffraction. J. Electrochem. Soc. 166, A3908 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Schuster, S. F. et al. Nonlinear aging characteristics of lithium-ion cells under different operational conditions. J. Energy Storage 1, 44–53 (2015).

    Article 

    Google Scholar
     

  • Yang, X.-G., Leng, Y., Zhang, G., Ge, S. & Wang, C.-Y. Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging. J. Power Sources 360, 28–40 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ma, X. et al. Hindering Rollover Failure of Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells during Long-Term Cycling. J. Electrochem. Soc. 166, A711 (2019).

    Article 

    Google Scholar
     

  • Yang, X.-G., Ge, S., Liu, T., Leng, Y. & Wang, C.-Y. A look into the voltage plateau signal for detection and quantification of lithium plating in lithium-ion cells. J. Power Sources 395, 251–261 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ogihara, N. et al. Theoretical and experimental analysis of porous electrodes for lithium-ion batteries by electrochemical impedance spectroscopy using a symmetric cell. J. Electrochem. Soc. 159, A1034–A1039 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Newman, J. S. & Tobias, C. W. Theoretical analysis of current distribution in porous electrodes. J. Electrochem. Soc. 109, 1183 (1962).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Li, L. et al. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. J. Electrochem. Soc. 158, A74 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Han, H.-B. et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties. J. Power Sources 196, 3623–3632 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Landesfeind, J., Hattendorff, J., Ehrl, A., Wall, W. A. & Gasteiger, H. A. Tortuosity determination of battery electrodes and separators by impedance spectroscopy. J. Electrochem. Soc. 163, A1373–A1387 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, Y. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yang, X.-G., Zhang, G. & Wang, C. Y. Computational design and refinement of self-heating lithium ion batteries. J. Power Sources 328, 203–211 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, J., Wu, B., Li, Z. & Huang, J. Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries. J. Power Sources 259, 106–116 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ye, Y., Saw, L. H., Shi, Y., Somasundaram, K. & Tay, A. A. O. Effect of thermal contact resistances on fast charging of large format lithium ion batteries. Electrochim. Acta 134, 327–337 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Aiken, C. P. et al. Li[Ni0.5Mn0.3Co0.2]O2 as a superior alternative to LiFePO4 for long-lived low voltage li-ion cells. J. Electrochem. Soc. 169, 050512 (2022).

    ADS 
    Article 

    Google Scholar
     

  • Longchamps, R. S., Yang, X. G. & Wang, C. Y. Fundamental insights into battery thermal management and safety. ACS Energy Lett. 7, 1103–1111 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Lima, P. Samsung SDI 94 Ah battery cell full specifications. PushEVs https://pushevs.com/2018/04/05/samsung-sdi-94-ah-battery-cell-full-specifications/ (2021).

  • Wang, C. Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515–518 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang, X. G., Liu, T. & Wang, C. Y. Innovative heating of large-size automotive Li-ion cells. J. Power Sources 342, 598–604 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, G. et al. Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures. Electrochim. Acta 218, 149–155 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Leng, Y. et al. Electrochemical cycle-life characterization of high energy lithium-ion cells with thick Li(Ni0.6Mn0.2Co 0.2)O2 and graphite electrodes. J. Electrochem. Soc. 164, A1037–A1049 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Source link