April 25, 2024
Formation of moiré interlayer excitons in space and time – Nature

Formation of moiré interlayer excitons in space and time – Nature

  • Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Kim, J. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y., Wang, Z., Yao, W., Liu, G.-B. & Yu, H. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B 95, 115429 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Merkl, P. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 18, 691–696 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Ovesen, S. et al. Interlayer exciton dynamics in van der Waals heterostructures. Commun. Phys. 2, 23 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Förg, M. et al. Moiré excitons in MoSe2–WSe2 heterobilayers and heterotrilayers. Nat. Commun. 12, 1656 (2021).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, F., Lovorn, T. & MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 97, 035306 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/Wse2 heterobilayers. Nature 567, 66–70 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Su, J.-J. & MacDonald, A. H. How to make a bilayer exciton condensate flow. Nat. Phys. 4, 799–802 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    MathSciNet 
    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Mueller, T. & Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2, 29 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yu, H., Wang, Y., Tong, Q., Xu, X. & Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Madéo, J. et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199–1204 (2020).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wallauer, R. et al. Momentum-resolved observation of exciton formation dynamics in monolayer WS2. Nano Lett. 21, 5867–5873 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Dong, S. et al. Direct measurement of key exciton properties: energy, dynamics, and spatial distribution of the wave function. Nat. Sci. 1, e10010 (2021).

    Article 

    Google Scholar
     

  • Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. Growth 303, 525–529 (2007).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Medjanik, K. et al. Direct 3D mapping of the Fermi surface and Fermi velocity. Nat. Mater. 16, 615–621 (2017).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Keunecke, M. et al. Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline. Rev. Sci. Instrum. 91, 063905 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of Au(111) at high momenta. Phys. Rev. B 102, 161403 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Man, M. K. L. et al. Experimental measurement of the intrinsic excitonic wave function. Sci. Adv. 7, eabg0192 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Karni, O. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 123, 247402 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 14, 801–805 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wallauer, R. et al. Momentum-resolved observation of ultrafast interlayer charge transfer between the topmost layers of MoS2. Phys. Rev. B 102, 125417 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Brem, S., Linderälv, C., Erhart, P. & Malic, E. Tunable phases of moiré excitons in van der Waals heterostructures. Nano Lett. 20, 8534–8540 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Koshino, M. Interlayer interaction in general incommensurate atomic layers. New J. Phys. 17, 015014 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Puschnig, P. et al. Reconstruction of molecular orbital densities from photoemission data. Science 326, 702–706 (2009).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Stansbury, C. H. et al. Visualizing electron localization of WS2/WSe2 moiré superlattices in momentum space. Sci. Adv. 7, eabf4387 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Tusche, C., Krasyuk, A. & Kirschner, J. Spin resolved bandstructure imaging with a high resolution momentum microscope. Ultramicroscopy 159, 520–529 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miaja-Avila, L. et al. Laser-assisted photoelectric effect from surfaces. Phys. Rev. Lett. 97, 113604 (2006).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Ulstrup, S. et al. Imaging microscopic electronic contrasts at the interface of single-layer WS2 with oxide and boron nitride substrates. Appl. Phys. Lett. 114, 151601 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jones, A. J. H. et al. Visualizing band structure hybridization and superlattice effects in twisted MoS2/WS2 heterobilayers. 2D Mater. 9, 015032 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schönhense, G. et al. Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens. Rev. Sci. Instrum. 92, 053703 (2021).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hellmann, S., Rossnagel, K., Marczynski-Bühlow, M. & Kipp, L. Vacuum space-charge effects in solid-state photoemission. Phys. Rev. B 79, 035402 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Passlack, S. et al. Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source. J. Appl. Phys. 100, 024912 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chernikov, A., Ruppert, C., Hill, H. M., Rigosi, A. F. & Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photon. 9, 466–470 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Dendzik, M. et al. Observation of an excitonic mott transition through ultrafast core-cum-conduction photoemission spectroscopy. Phys. Rev. Lett. 125, 096401 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Steinleitner, P. et al. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett. 17, 1455–1460 (2017).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Steinhoff, A. et al. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Liu, F., Ziffer, M. E., Hansen, K. R., Wang, J. & Zhu, X. Direct determination of band-gap renormalization in the photoexcited monolayer MoS2. Phys. Rev. Lett. 122, 246803 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Zimmermann, J. E. et al. Ultrafast charge-transfer dynamics in twisted MoS2/WSe2 heterostructures. ACS Nano 15, 14725–14731 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu, H. et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 17, 3591–3598 (2017).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Ahn, S. J. et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science 361, 782–786 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Jansen, G. S. M. et al. Efficient orbital imaging based on ultrafast momentum microscopy and sparsity-driven phase retrieval. New J. Phys. 22, 063012 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Source link