Mehlstäubler, T. E., Grosche, G., Lisdat, C., Schmidt, P. O. & Denker, H. Atomic clocks for geodesy. Rep. Prog. Phys. 81, 064401 (2018).
Lisdat, C. et al. A clock network for geodesy and fundamental science. Nat. Commun. 7, 12443 (2016).
Riehle, F., Gill, P., Arias, F. & Robertsson, L. The CIPM list of recommended frequency standard values: guidelines and procedures. Metrologia 55, 188–200 (2018).
Riehle, F. Towards a redefinition of the second based on optical atomic clocks. C. R. Phys. 16, 506–515 (2015).
McGrew, W. F. et al. Towards the optical second: verifying optical clocks at the SI limit. Optica 6, 448 (2019).
Bize, S. The unit of time: present and future directions. C. R. Phys. 20, 153–168 (2019).
Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D 94, 124043 (2016).
Campbell, S. L. et al. A fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).
McGrew, W. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87 (2018).
Deschênes, J.-D. et al. Synchronization of distant optical clocks at the femtosecond level. Phys. Rev. X 6, 021016 (2016).
Sinclair, L. C. et al. Synchronization of clocks through 12 km of strongly turbulent air over a city. Appl. Phys. Lett. 109, 151104 (2016).
Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).
Delva, P. et al. Test of special relativity using a fiber network of optical clocks. Phys. Rev. Lett. 118, 221102 (2017).
Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).
Chin, C., Flambaum, V. V. & Kozlov, M. G. Ultracold molecules: new probes on the variation of fundamental constants. New J. Phys. 11, 055048 (2009).
Roberts, B. M. et al. Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks. New J. Phys. 22, 093010 (2020).
Liu, Y. et al. Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123, 100505 (2019).
Droste, S. et al. Optical-frequency transfer over a single-span 1840 km fiber link. Phys. Rev. Lett. 111, 110801 (2013).
Predehl, K. et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 336, 441–444 (2012).
Cantin, E. et al. An accurate and robust metrological network for coherent optical frequency dissemination. New J. Phys. 23, 053027 (2021).
Katori, H. Optical lattice clocks and quantum metrology. Nat. Photonics 5, 203 (2011).
Giorgetta, F. R. et al. Optical two-way time and frequency transfer over free space. Nat. Photonics 7, 434 (2013).
Bodine, M. I. et al. Optical time-frequency transfer across a free-space, three-node network. APL Photonics 5, 076113 (2020).
Shen, Q. et al. Experimental simulation of time and frequency transfer via an optical satellite-ground link at 10 -18 instability. Optica 8, 471 (2021).
Bodine, M. I. et al. Optical atomic clock comparison through turbulent air. Phys. Rev. Res. 2, 33395 (2020).
Beloy, K. et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591, 564–569 (2021).
Bergeron, H. et al. Femtosecond time synchronization of optical clocks off of a flying quadcopter. Nat. Commun. 10, 1819 (2019).
Sinclair, L. C. et al. Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency. Phys. Rev. Lett. 120, 050801 (2018).
Gozzard, D. R. et al. Ultrastable free-space laser links for a global network of optical atomic clocks. Phys. Rev. Lett. 128, 020801 (2022).
Samain, E. et al. Time transfer by laser link: a complete analysis of the uncertainty budget. Metrologia 52, 423–432 (2015).
Cacciapuoti, L. & Schiller, S. I-SOC Scientific Requirements Technical Report (European Space Research and Technology Centre, 2017).
Exertier, P. et al. Time and laser ranging: a window of opportunity for geodesy, navigation, and metrology. J. Geod. 93, 2389–2404 (2019).
Robert, C., Conan, J.-M. & Wolf, P. Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links. Phys. Rev. A 93, 033860 (2016).
Swann, W. C. et al. Measurement of the impact of turbulence anisoplanatism on precision free-space optical time transfer. Phys. Rev. A 99, 023855 (2019).
Strohbehn, J. W. (ed.) Laser Beam Propagation in the Atmosphere Topics in Applied Physics Vol. 25 (Springer, 1978); https://doi.org/10.1007/3-540-08812-1
Conan, J.-M., Rousset, G. & Madec, P.-Y. Wave-front temporal spectra in high-resolution imaging through turbulence. J. Opt. Soc. Am. A 12, 1559–1570 (1995).
Bauch, A. et al. Comparison between frequency standards in europe and the usa at the 10−15 uncertainty level. Metrologia 43, 109–120 (2006).
Fujieda, M. et al. Advanced satellite-based frequency transfer at the 10−16 level. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 973–978 (2018).
Schioppo, M. et al. Ultrastable optical clock with two cold-atom ensembles. Nat. Photonics 11, 48–52 (2017).
Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics 13, 714–719 (2019).
Calosso, C. E., Clivati, C. & Micalizio, S. Avoiding aliasing in allan variance: an application to fiber link data analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 646–655 (2016).
More News
Enantioconvergent Cu-catalyzed N-alkylation of aliphatic amines – Nature
Political endorsements can affect scientific credibility
Ohio train derailment: scientists scan for lingering toxics