March 20, 2023
Free-space dissemination of time and frequency with 10−19 instability over 113 km – Nature

Free-space dissemination of time and frequency with 10−19 instability over 113 km – Nature

  • Mehlstäubler, T. E., Grosche, G., Lisdat, C., Schmidt, P. O. & Denker, H. Atomic clocks for geodesy. Rep. Prog. Phys. 81, 064401 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Lisdat, C. et al. A clock network for geodesy and fundamental science. Nat. Commun. 7, 12443 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Riehle, F., Gill, P., Arias, F. & Robertsson, L. The CIPM list of recommended frequency standard values: guidelines and procedures. Metrologia 55, 188–200 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Riehle, F. Towards a redefinition of the second based on optical atomic clocks. C. R. Phys. 16, 506–515 (2015).

    CAS 
    Article 

    Google Scholar
     

  • McGrew, W. F. et al. Towards the optical second: verifying optical clocks at the SI limit. Optica 6, 448 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bize, S. The unit of time: present and future directions. C. R. Phys. 20, 153–168 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D 94, 124043 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Campbell, S. L. et al. A fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • McGrew, W. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Deschênes, J.-D. et al. Synchronization of distant optical clocks at the femtosecond level. Phys. Rev. X 6, 021016 (2016).


    Google Scholar
     

  • Sinclair, L. C. et al. Synchronization of clocks through 12 km of strongly turbulent air over a city. Appl. Phys. Lett. 109, 151104 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Delva, P. et al. Test of special relativity using a fiber network of optical clocks. Phys. Rev. Lett. 118, 221102 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Chin, C., Flambaum, V. V. & Kozlov, M. G. Ultracold molecules: new probes on the variation of fundamental constants. New J. Phys. 11, 055048 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Roberts, B. M. et al. Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks. New J. Phys. 22, 093010 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123, 100505 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Droste, S. et al. Optical-frequency transfer over a single-span 1840 km fiber link. Phys. Rev. Lett. 111, 110801 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Predehl, K. et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 336, 441–444 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cantin, E. et al. An accurate and robust metrological network for coherent optical frequency dissemination. New J. Phys. 23, 053027 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Katori, H. Optical lattice clocks and quantum metrology. Nat. Photonics 5, 203 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Giorgetta, F. R. et al. Optical two-way time and frequency transfer over free space. Nat. Photonics 7, 434 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bodine, M. I. et al. Optical time-frequency transfer across a free-space, three-node network. APL Photonics 5, 076113 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shen, Q. et al. Experimental simulation of time and frequency transfer via an optical satellite-ground link at 10 -18 instability. Optica 8, 471 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Bodine, M. I. et al. Optical atomic clock comparison through turbulent air. Phys. Rev. Res. 2, 33395 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Beloy, K. et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591, 564–569 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Bergeron, H. et al. Femtosecond time synchronization of optical clocks off of a flying quadcopter. Nat. Commun. 10, 1819 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Sinclair, L. C. et al. Comparing optical oscillators across the air to milliradians in phase and 10−17 in frequency. Phys. Rev. Lett. 120, 050801 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gozzard, D. R. et al. Ultrastable free-space laser links for a global network of optical atomic clocks. Phys. Rev. Lett. 128, 020801 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Samain, E. et al. Time transfer by laser link: a complete analysis of the uncertainty budget. Metrologia 52, 423–432 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Cacciapuoti, L. & Schiller, S. I-SOC Scientific Requirements Technical Report (European Space Research and Technology Centre, 2017).

  • Exertier, P. et al. Time and laser ranging: a window of opportunity for geodesy, navigation, and metrology. J. Geod. 93, 2389–2404 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Robert, C., Conan, J.-M. & Wolf, P. Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links. Phys. Rev. A 93, 033860 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Swann, W. C. et al. Measurement of the impact of turbulence anisoplanatism on precision free-space optical time transfer. Phys. Rev. A 99, 023855 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Strohbehn, J. W. (ed.) Laser Beam Propagation in the Atmosphere Topics in Applied Physics Vol. 25 (Springer, 1978); https://doi.org/10.1007/3-540-08812-1

  • Conan, J.-M., Rousset, G. & Madec, P.-Y. Wave-front temporal spectra in high-resolution imaging through turbulence. J. Opt. Soc. Am. A 12, 1559–1570 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Bauch, A. et al. Comparison between frequency standards in europe and the usa at the 10−15 uncertainty level. Metrologia 43, 109–120 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Fujieda, M. et al. Advanced satellite-based frequency transfer at the 10−16 level. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 973–978 (2018).

  • Schioppo, M. et al. Ultrastable optical clock with two cold-atom ensembles. Nat. Photonics 11, 48–52 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics 13, 714–719 (2019).

  • Calosso, C. E., Clivati, C. & Micalizio, S. Avoiding aliasing in allan variance: an application to fiber link data analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 646–655 (2016).

    Article 

    Google Scholar
     

  • Source link