April 25, 2024

Ghost hyperbolic surface polaritons in bulk anisotropic crystals – Nature

  • 1.

    Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article 

    Google Scholar
     

  • 2.

    Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Hu, G., Shen, J., Qiu, C.-W., Alù, A. & Dai, S. Phonon polaritons and hyperbolic response in van der Waals materials. Adv. Opt. Mater. 8, 1901393 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Sternbach, A. J. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Li, P. et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. Nat. Commun. 11, 3663 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Tielrooij, K.-J. et al. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. Nat. Nanotechnol. 13, 41–46 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Castilla, S. et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 11, 4872 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Li, P. et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett. 17, 228–235 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Dai, S. et al. Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride. Adv. Mater. 30, 1706358 (2018).

    Article 

    Google Scholar
     

  • 23.

    D’yakonov, M. New type of electromagnetic wave propagating at an interface. Sov. Phys. JETP 67, 714–716 (1988).


    Google Scholar
     

  • 24.

    Narimanov, E. Ghost resonance in anisotropic materials: negative refractive index and evanescent field enhancement in lossless media. Adv. Photonics 1, 056003 (2019).


    Google Scholar
     

  • 25.

    Waseer, W. I., Naqvi, Q. A. & Mughal, M. J. Non-uniform plane waves (ghost waves) in general anisotropic medium. Opt. Commun. 453, 124334 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Narimanov, E. Dyakonov waves in biaxial anisotropic crystals. Phys. Rev. A (Coll. Park) 98, 013818 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Narimanov, E. Electromagnenic Ghost Waves. in Conference on Lasers and Electro-Optics JTu2A.144 (Optical Society of America, 2018).

  • 28.

    Walker, D., Glytsis, E. & Gaylord, T. Surface mode at isotropic–uniaxial and isotropic–biaxial interfaces. J. Opt. Soc. Am. A 15, 248–260 (1998).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Kuś, M., Haake, F. & Delande, D. Prebifurcation periodic ghost orbits in semiclassical quantization. Phys. Rev. Lett. 71, 2167–2171 (1993).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Zhou, S., Zhang, Q., Fu, S. F. & Wang, X. Z. Ghost surface phononic polaritons in ionic-crystal metamaterial. J. Opt. Soc. Am. B 35, 2764–2769 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Frech, R. & Nichols, H. Infrared reflectivity of calcite: Oblique phonons. Phys. Rev. B 17, 2775–2779 (1978).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Hellwege, K. H., Lesch, W., Plihal, M. & Schaack, G. Zwei-phononen-absorptionsspektren und dispersion der schwingungszweige in kristallen der kalkspatstruktur. Z. Physik 232, 61–86 (1970).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Breslin, V. M., Ratchford, D. C., Giles, A. J., Dunkelberger, A. D. & Owrutsky, J. C. Hyperbolic phonon polariton resonances in calcite nanopillars. Opt. Express 29, 11760–11772 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Huber, A. J., Ocelic, N. & Hillenbrand, R. Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy. J. Microsc. 229, 389–395 (2008).

    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature (in the press).

  • 37.

    Hu, G., Krasnok, A., Mazor, Y., Qiu, C.-W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Schuller, E., Borstel, G. & Falge, H. J. Surface phonon‐polaritons on general crystal cuts of α‐quartz observed by attenuated total reflection. Phys. Status Solidi B 69, 467–476 (1975).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    Lee, S. C., Ng, S. S., Hassan, H. A., Hassan, Z. & Dumelow, T. Surface phonon polariton responses of hexagonal sapphire crystals with non-polar and semi-polar crystallographic planes. Opt. Lett. 39, 5467–5470 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Lane, M. D. Midinfrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite. J. Geophys. Res. Planets 104, 14099–14108 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 41.

    Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Source link