September 16, 2024
Global marine microbial diversity and its potential in bioprospecting – Nature

Global marine microbial diversity and its potential in bioprospecting – Nature

  • Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling Expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, e77 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Overmann, J. & Lepleux, C. in The Marine Microbiome (ed. Stal, L. J. & Cretoiu, M. S.) 21–55 (2016).

  • Nishimura, Y. & Yoshizawa, S. The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes originated from various marine environments. Sci. Data 9, 305 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. USA 105, 7774–7778 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auladell, A. et al. Seasonal niche differentiation among closely related marine bacteria. ISME J. 16, 178–189 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghiglione, J. F. et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc. Natl Acad. Sci. USA 109, 17633–17638 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter, D. J. et al. Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems. eLife 11, e78129 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. J. Open Source Softw. 3, 29 (2018).

  • Jönsson, B. F. & Watson, J. R. The timescales of global surface-ocean connectivity. Nat. Commun. 7, 11239 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bentkowski, P., Van Oosterhout, C. & Mock, T. A model of genome size evolution for prokaryotes in stable and fluctuating environments. Genome Biol. Evol. 7, 2344–2351 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodríguez-Gijón, A. et al. A genomic perspective across Earth’s microbiomes reveals that genome size in archaea and bacteria is linked to ecosystem type and trophic strategy. Front. Microbiol. 12, 761869 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mara, P. et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 14, 3079–3092 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabello-Yeves, P. J. et al. The microbiome of the Black Sea water column analyzed by shotgun and genome centric metagenomics. Environ. Microbiome 16, 5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mende, D. R. et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat. Microbiol. 2, 1367–1373 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Musto, H. et al. Genomic GC level, optimal growth temperature, and genome size in prokaryotes. Biochem. Biophys. Res. Commun. 347, 1–3 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almpanis, A., Swain, M., Gatherer, D. & McEwan, N. Correlation between bacterial G+C content, genome size and the G+C content of associated plasmids and bacteriophages. Microb. Genom. 4, e000168 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez-Romero, M. A. & Casadesús, J. The bacterial epigenome. Nat. Rev. Microbiol. 18, 7–20 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hampton, H. G., Watson, B. N. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Whittaker, C. A. & Hynes, R. O. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol. Biol. Cell 13, 3369–3387 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasternak, Z. et al. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J. 7, 756–769 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, M., Wang, J., Zhang, Y. & Zhang, L. Increased WD40 motifs in Planctomycete bacteria and their evolutionary relevance. Mol. Phylogenet. Evol. 155, 107018 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, X. J. et al. Prokaryotic and highly-repetitive WD40 proteins: a systematic study. Sci. Rep. 7, 10585 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neer, E. J., Schmidt, C. J., Nambudripad, R. & Smith, T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuerst, J. A. & Sagulenko, E. Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat. Rev. Microbiol. 9, 403–413 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meaden, S. et al. High viral abundance and low diversity are associated with increased CRISPR–Cas prevalence across microbial ecosystems. Curr. Biol. 32, 220–227.e225 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burstein, D. et al. Major bacterial lineages are essentially devoid of CRISPR–Cas viral defence systems. Nat. Commun. 7, 10613 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weissman, J. L., Laljani, R. M. R., Fagan, W. F. & Johnson, P. L. F. Visualization and prediction of CRISPR incidence in microbial trait-space to identify drivers of antiviral immune strategy. ISME J. 13, 2589–2602 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gophna, U. et al. No evidence of inhibition of horizontal gene transfer by CRISPR–Cas on evolutionary timescales. ISME J. 9, 2021–2027 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, X., Alain, K. & Shao, Z. Microorganisms from deep-sea hydrothermal vents. Mar. Life Sci. Tech. 3, 204–230 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wheatley, R. M. & MacLean, R. C. CRISPR–Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa. ISME J. 15, 1420–1433 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shehreen, S., Chyou, T. Y., Fineran, P. C. & Brown, C. M. Genome-wide correlation analysis suggests different roles of CRISPR–Cas systems in the acquisition of antibiotic resistance genes in diverse species. Philos. Trans. R Soc. B 374, 20180384 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wilkinson, R. A., Martin, C., Nemudryi, A. A. & Wiedenheft, B. CRISPR RNA-guided autonomous delivery of Cas9. Nat. Struct. Mol. Biol. 26, 14–24 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayikpoe, R. S. et al. A scalable platform to discover antimicrobials of ribosomal origin. Nat. Commun. 13, 6135 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, B. et al. Global analysis of the biosynthetic chemical space of marine prokaryotes. Microbiome 11, 144 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fjell, C. D., Hiss, J. A., Hancock, R. E. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11, 37–51 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083 e1021 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawai, F., Kawabata, T. & Oda, M. Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling. ACS Sustain. Chem. Eng. 8, 8894–8908 (2020).

    Article 
    CAS 

    Google Scholar
     

  • DeFrancesco, L. Closing the recycling circle. Nat. Biotechnol. 38, 665–668 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, B., Wang, D. & Wei, N. Enzyme discovery and engineering for sustainable plastic recycling. Trends Biotechnol. 40, 22–37 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Joo, S. et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 9, 382 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, M., Gai, Y., Guo, X., Hou, Y. & Zeng, R. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: a mini review. Mar. Drugs 17, 656 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, T. S. B. et al. SPIRE: a Searchable, Planetary-scale mIcrobiome REsource. Nucleic Acids Res. 52, D777–D783 (2023).

    Article 
    PubMed Central 

    Google Scholar
     

  • Collins, S., Boyd, P. W. & Doblin, M. A. Evolution, microbes, and changing ocean conditions. Annu. Rev. Mar. Sci. 12, 181–208 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Cordero, O. X. & Polz, M. F. Explaining microbial genomic diversity in light of evolutionary ecology. Nat. Rev. Microbiol. 12, 263–273 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pursey, E., Dimitriu, T., Paganelli, F. L., Westra, E. R. & van Houte, S. CRISPR–Cas is associated with fewer antibiotic resistance genes in bacterial pathogens. Philos. Trans. R Soc. B 377, 20200464 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacinto, F. V., Link, W. & Ferreira, B. I. CRISPR/Cas9-mediated genome editing: from basic research to translational medicine. J. Cell. Mol. Med. 24, 3766–3778 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saati-Santamaria, Z., Selem-Mojica, N., Peral-Aranega, E., Rivas, R. & Garcia-Fraile, P. Unveiling the genomic potential of Pseudomonas type strains for discovering new natural products. Microb. Genom. 8, 000758 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belknap, K. C., Park, C. J., Barth, B. M. & Andam, C. P. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci. Rep. 10, 2003 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, S., Zeng, M., Wang, H. & Zhang, H. Micromonospora: a prolific source of bioactive secondary netabolites with therapeutic potential. J. Med. Chem. 65, 8735–8771 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szymczak, P. et al. Discovering highly potent antimicrobial peptides with deep generative model HydrAMP. Nat. Commun. 14, 1453 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tully, B. J., Wheat, C. G., Glazer, B. T. & Huber, J. A. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME J. 12, 1–16 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galambos, D., Anderson, R. E., Reveillaud, J. & Huber, J. A. Genome-resolved metagenomics and metatranscriptomics reveal niche differentiation in functionally redundant microbial communities at deep-sea hydrothermal vents. Environ. Microbiol. 21, 4395–4410 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dombrowski, N., Seitz, K. W., Teske, A. P. & Baker, B. J. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 5, 106 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reysenbach, A. L. et al. Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities. Proc. Natl Acad. Sci. USA 117, 32627–32638 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konstantinidis, K. T., Braff, J., Karl, D. M. & DeLong, E. F. Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl. Environ. Microbiol. 75, 5345–5355 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelve, E. A., Fontanez, K. M. & DeLong, E. F. Bacterial succession on sinking particles in the ocean’s interior. Front. Microbiol. 8, 2269 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kato, S., Hirai, M., Ohkuma, M. & Suzuki, K. Microbial metabolisms in an abyssal ferromanganese crust from the Takuyo-Daigo Seamount as revealed by metagenomics. PLoS ONE 14, e0224888 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buongiorno, J., Sipes, K., Wasmund, K., Loy, A. & Lloyd, K. G. Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. PLoS ONE 15, e0234839 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robbins, S. J. et al. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat. Microbiol. 4, 2090–2100 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • De Corte, D. et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front. Microbiol. 10, 1801 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rinke, C. et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 13, 663–675 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin-Cuadrado, A. B. et al. A new class of marine Euryarchaeota group II from the Mediterranean deep chlorophyll maximum. ISME J. 9, 1619–1634 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuchsman, C. A., Devol, A. H., Saunders, J. K., McKay, C. & Rocap, G. Niche partitioning of the N cycling microbial community of an offshore oxygen deficient zone. Front. Microbiol. 8, 2384 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haro-Moreno, J. M., Rodriguez-Valera, F. & Lopez-Perez, M. Prokaryotic population dynamics and viral predation in a marine succession experiment using metagenomics. Front. Microbiol. 10, 2926 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pascoal, F. et al. Inter-comparison of marine microbiome sampling protocols. ISME Commun. 3, 84 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raes, E. J., Bodrossy, L., van de Kamp, J., Bissett, A. & Waite, A. M. Marine bacterial richness increases towards higher latitudes in the eastern Indian Ocean. Limnol. Oceanogr. Lett. 3, 10–19 (2017).

    Article 

    Google Scholar
     

  • Schreiber, L. et al. Potential for microbially mediated natural attenuation of diluted bitumen on the coast of British Columbia (Canada). Appl. Environ. Microbiol. 85, e00086-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biller, S. J. et al. Marine microbial metagenomes sampled across space and time. Sci. Data 5, 180176 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome 8, 47 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tremblay, J. et al. Metagenomic and metatranscriptomic responses of natural oil degrading bacteria in the presence of dispersants. Environ. Microbiol. 21, 2307–2319 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anstett, J. et al. A compendium of bacterial and archaeal single-cell amplified genomes from oxygen deficient marine waters. Sci. Data 10, 332 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diez, B. et al. Metagenomic analysis of the Indian Ocean picocyanobacterial community: structure, potential function and evolution. PLoS ONE 11, e0155757 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orsi, W. D. et al. Climate oscillations reflected within the microbiome of Arabian Sea sediments. Sci. Rep. 7, 6040 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, A. E. et al. Discovery of an Antarctic ascidian-associated uncultivated Verrucomicrobia with antimelanoma palmerolide biosynthetic potential. mSphere 6, e0075921 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, T. et al. Mining, analyzing, and integrating viral signals from metagenomic data. Microbiome 7, 42 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aylward, F. O. et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc. Natl Acad. Sci. USA 114, 11446–11451 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandes, S. et al. Enhanced carbon-sulfur cycling in the sediments of Arabian Sea oxygen minimum zone center. Sci. Rep. 8, 8665 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markussen, T. et al. Coupling biogeochemical process rates and metagenomic blueprints of coastal bacterial assemblages in the context of environmental change. Environ. Microbiol. 20, 3083–3099 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duarte, C. M. et al. Sequencing effort dictates gene discovery in marine microbial metagenomes. Environ. Microbiol. 22, 4589–4603 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshitake, K. et al. Development of a time-series shotgun metagenomics database for monitoring microbial communities at the Pacific coast of Japan. Sci. Rep. 11, 12222 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdel-Ghaffar, F. et al. Morphological and molecular biological characterization of Pleistophora aegyptiaca sp. nov. infecting the Red Sea fish Saurida tumbil. Parasitol. Res. 110, 741–752 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Atlas, R. M. et al. Oil biodegradation and oil-degrading microbial populations in marsh sediments impacted by oil from the Deepwater Horizon well blowout. Environ. Sci. Technol. 49, 8356–8366 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hauptmann, A. L. et al. Contamination of the Arctic reflected in microbial metagenomes from the Greenland ice sheet. Environ. Res. Lett. 12, 074019 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Botte, E. S. et al. Future ocean conditions induce necrosis, microbial dysbiosis and nutrient cycling imbalance in the reef sponge Stylissa flabelliformis. ISME Commun. 3, 53 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, L. R. et al. Metagenomic covariation along densely sampled environmental gradients in the Red Sea. ISME J. 11, 138–151 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hilton, J. A., Satinsky, B. M., Doherty, M., Zielinski, B. & Zehr, J. P. Metatranscriptomics of N2-fixing cyanobacteria in the Amazon River plume. ISME J. 9, 1557–1569 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nilsson, E. et al. Genomic and seasonal variations among aquatic phages infecting the Baltic Sea Gammaproteobacterium Rheinheimera sp. Strain BAL341. Appl. Environ. Microbiol. 85, e01003–e01019 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glasl, B. et al. Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes. ISME J. 14, 1435–1450 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdou, Y. T. et al. Characterization of a novel peptide mined from the Red Sea brine pools and modified to enhance its anticancer activity. BMC Cancer 23, 699 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romero Picazo, D. et al. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. ISME J. 13, 2954–2968 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saw, J. H. W. et al. Pangenomics analysis reveals diversification of enzyme families and niche specialization in globally abundant SAR202 bacteria. mBio 11, e02975–19 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • St John, E., Flores, G. E., Meneghin, J. & Reysenbach, A. L. Deep-sea hydrothermal vent metagenome-assembled genomes provide insight into the phylum Nanoarchaeota. Environ. Microbiol. Rep. 11, 262–270 (2019).

    Article 

    Google Scholar
     

  • Anantharaman, K. et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 344, 757–760 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Niemann, H. et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443, 854–858 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jungbluth, S. P., Bowers, R. M., Lin, H. T., Cowen, J. P. & Rappe, M. S. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt. ISME J. 10, 2033–2047 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Perez, M., Haro-Moreno, J. M., Gonzalez-Serrano, R., Parras-Molto, M. & Rodriguez-Valera, F. Genome diversity of marine phages recovered from Mediterranean metagenomes: Size matters. PLoS Genet. 13, e1007018 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 7, 47 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, H. et al. Comparative genomics and proteomic analysis of assimilatory sulfate reduction pathways in anaerobic methanotrophic archaea. Front. Microbiol. 9, 2917 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Backstrom, D. et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio 10, e02497-18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattock, J. & Watson, M. A comparison of single-coverage and multi-coverage metagenomic binning reveals extensive hidden contamination. Nat. Methods 20, 1170–1173 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitts, P. A. et al. Assembly: a resource for assembled genomes at NCBI. Nucleic Acids Res. 44, D73–D80 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0501-8 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russel, J., Pinilla-Redondo, R., Mayo-Munoz, D., Shah, S. A. & Sorensen, S. J. CRISPRCasTyper: automated identification, annotation, and classification of CRISPR–Cas loci. CRISPR J. 3, 462–469 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, B., Zheng, J. & Yin, Y. AcaFinder: genome mining for anti-CRISPR-associated genes. mSystems 7, e0081722 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sauer, D. B. & Wang, D. N. Predicting the optimal growth temperatures of prokaryotes using only genome derived features. Bioinformatics 35, 3224–3231 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. A genome and gene catalog of glacier microbiomes. Nat. Biotechnol. 40, 1341–1348 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Johansson, M. H. K. et al. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 76, 101–109 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinilla-Redondo, R. et al. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements. Nat. Commun. 11, 5652 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahendra, C. et al. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nat Microbiol 5, 620–629 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohanraju, P. et al. Alternative functions of CRISPR–Cas systems in the evolutionary arms race. Nat. Rev. Microbiol. 20, 351–364 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. DNB-based on-chip motif finding: a high-throughput method to profile different types of protein–DNA interactions. Sci. Adv. 6, eabb3350 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagih, O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics 33, 3645–3647 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, L. et al. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci. Adv. 6, eaay9392 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medema, M. H. et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–W346 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kautsar, S. A., van der Hooft, J. J. J., de Ridder, D. & Medema, M. H. BiG-SLiCE: a highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. Gigascience 10, giaa154 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kautsar, S. A., Blin, K., Shaw, S., Weber, T. & Medema, M. H. BiG-FAM: the biosynthetic gene cluster families database. Nucleic Acids Res. 49, D490–D497 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y. et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat. Biotechnol. 40, 921–931 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Humphries, R. M. et al. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J. Clin. Microbiol. 56, e01934–17 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinegger, M. & Soding, J. Clustering huge protein sequence sets in linear time. Nat. Commun. 9, 2542 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coelho, L. P. et al. Towards the biogeography of prokaryotic genes. Nature 601, 252–256 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, S. et al. Deciphering the microbial taxonomy and functionality of two diverse mangrove ecosystems and their potential abilities to produce bioactive compounds. mSystems 5, e00851–19 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, X. et al. Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun. 8, 2106 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danso, D. et al. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl. Environ. Microbiol. 84, e02773-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erickson, E. et al. Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity. Nat. Commun. 13, 7850 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, K. et al. A dual fluorescence assay enables high-throughput screening for poly(ethylene terephthalate) hydrolases. ChemSusChem 16, e202202019 (2022).

    Article 

    Google Scholar
     

  • Cui, Y. et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal. 11, 1340–1350 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Source link