September 18, 2024
Gravitational instability in a planet-forming disk – Nature

Gravitational instability in a planet-forming disk – Nature

  • Chiang, E. & Youdin, A. N. Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ormel, C. W. Formation, Evolution, and Dynamics of Young Solar Systems. Astrophysics and Space Science Library Vol. 445 (eds Pessah, M. & Gressel, O.) 197–228 (Springer, 2017).

  • Liu, B. & Ji, J. A tale of planet formation: from dust to planets. Res. Astron. Astrophys. 20, 164 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Drążkowska, J. et al. Planet formation theory in the era of ALMA and Kepler: from pebbles to exoplanets. In Protostars and Planets VII Vol. 534 of the Astronomical Society of the Pacific Conference Series (eds Inutsuka, S. et al.) 717 (ASP, 2023).

  • Boss, A. P. Giant planet formation by gravitational instability. Science 276, 1836–1839 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gammie, C. F. Nonlinear outcome of gravitational instability in cooling, gaseous disks. Astrophys. J. 553, 174–183 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Rice, W. K. M. et al. Substellar companions and isolated planetary-mass objects from protostellar disc fragmentation. Mon. Not. R. Astron. Soc. 346, L36–L40 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, Z., Hartmann, L., Nelson, R. P. & Gammie, C. F. Challenges in forming planets by gravitational instability: disk irradiation and clump migration, accretion, and tidal destruction. Astrophys. J. 746, 110 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Deng, H., Mayer, L. & Helled, R. Formation of intermediate-mass planets via magnetically controlled disk fragmentation. Nat. Astron. 5, 440–444 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Cadman, J., Rice, K. & Hall, C. AB Aurigae: possible evidence of planet formation through the gravitational instability. Mon. Not. R. Astron. Soc. 504, 2877–2888 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs. Mon. Not. R. Astron. Soc. 351, 630–642 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Cossins, P., Lodato, G. & Clarke, C. J. Characterizing the gravitational instability in cooling accretion discs. Mon. Not. R. Astron. Soc. 393, 1157–1173 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Dipierro, G., Lodato, G., Testi, L. & de Gregorio Monsalvo, I. How to detect the signatures of self-gravitating circumstellar discs with the Atacama Large Millimeter/sub-millimeter Array. Mon. Not. R. Astron. Soc. 444, 1919–1929 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kratter, K. & Lodato, G. Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271–311 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dong, R., Hall, C., Rice, K. & Chiang, E. Spiral arms in gravitationally unstable protoplanetary disks as imaged in scattered light. Astrophys. J. Lett. 812, L32 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hall, C. et al. Directly observing continuum emission from self-gravitating spiral waves. Mon. Not. R. Astron. Soc. 458, 306–318 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hall, C. et al. The temporal requirements of directly observing self-gravitating spiral waves in protoplanetary disks with ALMA. Astrophys. J. 871, 228 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Paneque-Carreño, T. et al. Spiral arms and a massive dust disk with non-Keplerian kinematics: possible evidence for gravitational instability in the disk of Elias 2–27. Astrophys. J. 914, 88 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Veronesi, B. et al. A dynamical measurement of the disk mass in Elias 227. Astrophys. J. Lett. 914, L27 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stapper, L. M. et al. Constraining the gas mass of Herbig disks using CO isotopologues. Astron. Astrophys. 682, A149 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hall, C. et al. Predicting the kinematic evidence of gravitational instability. Astrophys. J. 904, 148 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Longarini, C. et al. Investigating protoplanetary disk cooling through kinematics: analytical GI wiggle. Astrophys. J. Lett. 920, L41 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Terry, J. P. et al. Constraining protoplanetary disc mass using the GI wiggle. Mon. Not. R. Astron. Soc. 510, 1671–1679 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van den Ancker, M. E. et al. HIPPARCOS data on Herbig Ae/Be stars: an evolutionary scenario. Astron. Astrophys. 324, L33–L36 (1997).

    ADS 

    Google Scholar
     

  • DeWarf, L. E., Sepinsky, J. F., Guinan, E. F., Ribas, I. & Nadalin, I. Intrinsic properties of the young stellar object SU Aurigae. Astrophys. J. 590, 357–367 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Beck, T. L. & Bary, J. S. A search for spatially resolved infrared rovibrational molecular hydrogen emission from the disks of young stars. Astrophys. J. 884, 159 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Garufi, A. et al. The SPHERE view of the Taurus star-forming region. Astron. Astrophys. 685, A53 (2024).

    Article 

    Google Scholar
     

  • Rodríguez, L. F. et al. An ionized outflow from AB Aur, a Herbig Ae Star with a transitional disk. Astrophys. J. Lett. 793, L21 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Guzmán-Díaz, J. et al. Homogeneous study of Herbig Ae/Be stars from spectral energy distributions and Gaia EDR3. Astron. Astrophys. 650, A182 (2021).

    Article 

    Google Scholar
     

  • Gaia Collaboration. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

    Article 

    Google Scholar
     

  • Henning, T., Burkert, A., Launhardt, R., Leinert, C. & Stecklum, B. Infrared imaging and millimetre continuum mapping of Herbig Ae/Be and FU Orionis stars. Astron. Astrophys. 336, 565–586 (1998).

    ADS 

    Google Scholar
     

  • Bouwman, J., de Koter, A., van den Ancker, M. E. & Waters, L. B. F. M. The composition of the circumstellar dust around the Herbig Ae stars AB Aur and HD 163296. Astron. Astrophys. 360, 213–226 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Pérez, L. M. et al. Spiral density waves in a young protoplanetary disk. Science 353, 1519–1521 (2016).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Boccaletti, A. et al. Possible evidence of ongoing planet formation in AB Aurigae. A showcase of the SPHERE/ALMA synergy. Astron. Astrophys. 637, L5 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Dong, R., Vorobyov, E., Pavlyuchenkov, Y., Chiang, E. & Liu, H. B. Signatures of gravitational instability in resolved images of protostellar disks. Astrophys. J. 823, 141 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hashimoto, J. et al. Direct imaging of fine structures in giant planet-forming regions of the protoplanetary disk around AB Aurigae. Astrophys. J. Lett. 729, L17 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Fukagawa, M. et al. Spiral structure in the circumstellar disk around AB Aurigae. Astrophys. J. Lett. 605, L53–L56 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, S.-Y. et al. Possible molecular spiral arms in the protoplanetary disk of AB Aurigae. Astrophys. J. 645, 1297–1304 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perrin, M. D. et al. The case of AB Aurigae’s disk in polarized light: is there truly a gap? Astrophys. J. Lett. 707, L132–L136 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Teague, R. & Foreman-Mackey, D. A robust method to measure centroids of spectral lines. Res. Notes AAS 2, 173 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Teague, R. Statistical uncertainties in moment maps of line emission. Res. Notes AAS 3, 74 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs — II. The massive disc case. Mon. Not. R. Astron. Soc. 358, 1489–1500 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Oppenheimer, B. R. et al. The solar-system-scale disk around AB Aurigae. Astrophys. J. 679, 1574–1581 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tang, Y.-W. et al. Planet formation in AB Aurigae: imaging of the inner gaseous spirals observed inside the dust cavity. Astrophys. J. 840, 32 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Currie, T. et al. Images of embedded Jovian planet formation at a wide separation around AB Aurigae. Nat. Astron. 6, 751–759 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Rice, W. K. M., Lodato, G., Pringle, J. E., Armitage, P. J. & Bonnell, I. A. Accelerated planetesimal growth in self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 355, 543–552 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Longarini, C., Armitage, P. J., Lodato, G., Price, D. J. & Ceppi, S. The role of the drag force in the gravitational stability of dusty planet-forming disc – II. Numerical simulations. Mon. Not. R. Astron. Soc. 522, 6217–6235 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Booth, R. A. & Clarke, C. J. Collision velocity of dust grains in self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 458, 2676–2693 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rowther, S. et al. The role of drag and gravity on dust concentration in a gravitationally unstable disc. Mon. Not. R. Astron. Soc. 528, 2490–2500 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Salyk, C. et al. Measuring protoplanetary disk accretion with H I Pfund β. Astrophys. J. 769, 21 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Rice, W. K. M. & Armitage, P. J. Time-dependent models of the structure and stability of self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 396, 2228–2236 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hartmann, L., Calvet, N., Gullbring, E. & D’Alessio, P. Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385–400 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Dong, R., Najita, J. R. & Brittain, S. Spiral arms in disks: planets or gravitational instability? Astrophys. J. 862, 103 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sicilia-Aguilar, A., Henning, T. & Hartmann, L. W. Accretion in evolved and transitional disks in CEP OB2: looking for the origin of the inner holes. Astrophys. J. 710, 597–612 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Tang, Y. W. et al. The circumstellar disk of AB Aurigae: evidence for envelope accretion at late stages of star formation? Astron. Astrophys. 547, A84 (2012).

    Article 

    Google Scholar
     

  • Nakajima, T. & Golimowski, D. A. Coronagraphic imaging of pre-main-sequence stars: remnant envelopes of star formation seen in reflection. Astron. J. 109, 1181–1198 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Grady, C. A. et al. Hubble Space Telescope space telescope imaging spectrograph coronagraphic imaging of the Herbig AE star AB Aurigae. Astrophys. J. Lett. 523, L151–L154 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Rivière-Marichalar, P. et al. AB Aur, a Rosetta stone for studies of planet formation. I. Chemical study of a planet-forming disk. Astron. Astrophys. 642, A32 (2020).

    Article 

    Google Scholar
     

  • Ediss, G. A. et al. in Proc. 15th International Symposium on Space Terahertz Technology (ed. Narayanan, G.) 181–188 (ISSTT, 2004).

  • Cornwell, T. J. Multiscale CLEAN deconvolution of radio synthesis images. IEEE J. Sel. Top. Signal Process. 2, 793–801 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kepley, A. A. et al. Auto-multithresh: a general purpose automasking algorithm. Publ. Astron. Soc. Pac. 132, 024505 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Leroy, A. K. et al. PHANGS-ALMA data processing and pipeline. Astrophys. J. Suppl. Ser. 255, 19 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jorsater, S. & van Moorsel, G. A. High resolution neutral hydrogen observations of the barred spiral galaxy NGC 1365. Astron. J. 110, 2037 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Czekala, I. et al. Molecules with ALMA at Planet-forming Scales (MAPS). II. CLEAN strategies for synthesizing images of molecular line emission in protoplanetary disks. Astrophys. J. Suppl. Ser. 257, 2 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Teague, R. & Foreman-Mackey, D. bettermoments: a robust method to measure line centroids. Zenodo https://doi.org/10.5281/zenodo.1419753 (2018).

  • Teague, R. eddy: extracting protoplanetary disk dynamics with Python. J. Open Source Softw. 4, 1220 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article 

    Google Scholar
     

  • Piétu, V., Guilloteau, S. & Dutrey, A. Sub-arcsec imaging of the AB Aur molecular disk and envelope at millimeter wavelengths: a non Keplerian disk. Astron. Astrophys. 443, 945–954 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Price, D. J. et al. Phantom: a smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics. Publ. Astron. Soc. Aust. 35, e031 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bate, M. R., Bonnell, I. A. & Price, N. M. Modelling accretion in protobinary systems. Mon. Not. R. Astron. Soc. 277, 362–376 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Cullen, L. & Dehnen, W. Inviscid smoothed particle hydrodynamics. Mon. Not. R. Astron. Soc. 408, 669–683 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Pinte, C., Ménard, F., Duchêne, G. & Bastien, P. Monte Carlo radiative transfer in protoplanetary disks. Astron. Astrophys. 459, 797–804 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Pinte, C. et al. Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation. Astron. Astrophys. 498, 967–980 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Pinte, C. et al. Kinematic evidence for an embedded protoplanet in a circumstellar disk. Astrophys. J. Lett. 860, L13 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Li, D. et al. An ordered magnetic field in the protoplanetary disk of AB Aur revealed by mid-infrared polarimetry. Astrophys. J. 832, 18 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hillenbrand, L. A., Strom, S. E., Vrba, F. J. & Keene, J. Herbig Ae/Be stars: intermediate-mass stars surrounded by massive circumstellar accretion disks. Astrophys. J. 397, 613–643 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Natta, A. et al. A reconsideration of disk properties in Herbig Ae stars. Astron. Astrophys. 371, 186–197 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Lodato, G. Classical disc physics. New Astron. Rev. 52, 21–41 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Rosotti, G. P. et al. Spiral arms in the protoplanetary disc HD100453 detected with ALMA: evidence for binary–disc interaction and a vertical temperature gradient. Mon. Not. R. Astron. Soc. 491, 1335–1347 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meru, F. et al. On the origin of the spiral morphology in the Elias 2–27 circumstellar disk. Astrophys. J. Lett. 839, L24 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. Disk evolution study through imaging of nearby young stars (DESTINYS): diverse outcomes of binary–disk interactions. Astron. Astrophys. 672, A145 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Norfolk, B. J. et al. The origin of the Doppler flip in HD 100546: a large-scale spiral arm generated by an inner binary companion. Astrophys. J. Lett. 936, L4 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ginski, C. et al. Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE. Astron. Astrophys. 595, A112 (2016).

    Article 

    Google Scholar
     

  • Goodman, J. & Rafikov, R. R. Planetary torques as the viscosity of protoplanetary disks. Astrophys. J. 552, 793–802 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Rafikov, R. R. Nonlinear propagation of planet-generated tidal waves. Astrophys. J. 569, 997–1008 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Ogilvie, G. I. & Lubow, S. H. On the wake generated by a planet in a disc. Mon. Not. R. Astron. Soc. 330, 950–954 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Bollati, F., Lodato, G., Price, D. J. & Pinte, C. The theory of kinks – I. A semi-analytic model of velocity perturbations due to planet–disc interaction. Mon. Not. R. Astron. Soc. 504, 5444–5454 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hilder, T., Fasano, D., Bollati, F. & Vandenberg, J. Wakeflow: a Python package for semi-analytic models of planetary wakes. J. Open Source Softw. 8, 4863 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, Y. et al. UV-optical emission of AB Aur b is consistent with scattered stellar light. Astron. J. 166, 220 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Biddle, L. I., Bowler, B. P., Zhou, Y., Franson, K. & Zhang, Z. Deep Paβ imaging of the candidate accreting protoplanet AB Aur b. Astron. J. 167, 172 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Currie, T. Direct imaging detection of the protoplanet AB Aur b at wavelengths covering Paβ. Res. Notes AAS 8, 146 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, Z., Dong, R., Stone, J. M. & Rafikov, R. R. The structure of spiral shocks excited by planetary-mass companions. Astrophys. J. 813, 88 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. & Zhu, Z. The effects of disc self-gravity and radiative cooling on the formation of gaps and spirals by young planets. Mon. Not. R. Astron. Soc. 493, 2287–2305 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Dullemond, C. P. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). VI. Dust trapping in thin-ringed protoplanetary disks. Astrophys. J. Lett. 869, L46 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Birnstiel, T. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA maps of protoplanetary disks in terms of a dust model. Astrophys. J. Lett. 869, L45 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link