Leidenfrost, J. G. De aquae communis nonnullis qualitatibus tractatus (Ovenius, 1756).
Talari, V., Behar, P., Lu, Y., Haryadi, E. & Liu, D. Leidenfrost drops on micro/nanostructured surfaces. Front. Energy 12, 22–42 (2018).
Farokhnia, N., Sajadi, S. M., Irajizad, P. & Ghasemi, H. Decoupled hierarchical structures for suppression of Leidenfrost phenomenon. Langmuir 33, 2541–2550 (2017).
Weickgenannt, C. M. et al. Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces. Phys. Rev. E 84, 036310 (2011).
Kim, H. et al. On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena. Appl. Phys. Lett.98, 083121 (2011).
Kruse, C. et al. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces. Langmuir 29, 9798–9806 (2013).
Kwon, H. M., Bird, J. C. & Varanasi, K. K. Increasing Leidenfrost point using micro-nano hierarchical surface structures. Appl. Phys. Lett.103, 201601 (2013).
Nair, H. et al. The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces. Soft Matter 10, 2102–2109 (2014).
Geraldi, N. R. et al. Leidenfrost transition temperature for stainless steel meshes. Mater. Lett. 176, 205–208 (2016).
Sajadi, S. M., Irajizad, P., Kashyap, V., Farokhnia, N. & Ghasemi, H. Surfaces for high heat dissipation with no Leidenfrost limit. Appl. Phys. Lett.111, 021605 (2017).
Li, J. et al. Directional transport of high-temperature Janus droplets mediated by structural topography. Nat. Phys.12, 606–612 (2016).
van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020).
Dhillon, N. S., Buongiorno, J. & Varanasi, K. K. Critical heat flux maxima during boiling crisis on textured surfaces. Nat. Commun.6, 8247 (2015).
Gao, X. & Li, R. in Advanced Cooling Technologies and Applications (ed. Sohel Murshed, S. M.) Ch. 3 (IntechOpen, 2019).
Tiwei, T. et al. High efficiency direct liquid jet impingement cooling of high power devices using a 3D-shaped polymer cooler. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) 32.5.1–32.5.4 (IEEE, 2017).
Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. & Thoroddsen, S. T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 (2012).
Saranadhi, D. et al. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface. Sci. Adv. 2, e1600686 (2016).
Burton, J. C., Sharpe, A. L., van der Veen, R. C., Franco, A. & Nagel, S. R. Geometry of the vapor layer under a Leidenfrost drop. Phys. Rev. Lett. 109, 074301 (2012).
Adera, S., Raj, R., Enright, R. & Wang, E. N. Non-wetting droplets on hot superhydrophilic surfaces. Nat. Commun. 4, 2518 (2013).
Hsu, S. H., Ho, Y. H., Ho, M. X., Wang, J. C. & Pan, C. On the formation of vapor film during quenching in de-ionized water and elimination of film boiling during quenching in natural sea water. Int. J. Heat Mass Transfer 86, 65–71 (2015).
Rahman, M. M., Pollack, J. & McCarthy, M. Increasing boiling heat transfer using low conductivity materials. Sci. Rep. 5, 13145 (2015).
Wei, M. et al. Heat transfer suppression by suspended droplets on microstructured surfaces. Appl. Phys. Lett. 116, 233703 (2020).
Deng, T. et al. Nonwetting of impinging droplets on textured surfaces. Appl. Phys. Lett. 94, 133109 (2009).
Bernardin, J. D., Stebbins, C. J. & Mudawar, I. Effects of surface roughness on water droplet impact history and heat transfer regimes. Int. J. Heat Mass Transfer 40, 73–88 (1996).
Tran, T. et al. Droplet impact on superheated micro-structured surfaces. Soft Matter 9, 3272–3282 (2013).
Mao, X. et al. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv. 2, 12216–12223 (2012).
Kim, S. H., Ahn, H. S., Kim, J., Kaviany, M. & Kim, M. H. Dynamics of water droplet on a heated nanotubes surface. Appl. Phys. Lett.102, 233901 (2013).
Lee, G. C. et al. Induced liquid-solid contact via micro/nano multiscale texture on a surface and its effect on the Leidenfrost temperature. Exp. Therm Fluid Sci.84, 156–164 (2017).
Kim, S. H., Lee, G., Kim, H. & Kim, M. H. Leidenfrost point and droplet dynamics on heated micropillar array surface. Int. J. Heat Mass Transfer 139, 1–9 (2019).
Hasimoto, H. On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech.5, 317–328 (1959).
More News
Extreme solar storms and the quest for exact dating with radiocarbon – Nature
Axon-like active signal transmission – Nature
Drosophila are hosts to the first described parasitoid wasp of adult flies – Nature