April 25, 2024
Ladderphane copolymers for high-temperature capacitive energy storage – Nature

Ladderphane copolymers for high-temperature capacitive energy storage – Nature

  • Li, Q. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tan, D., Zhang, L., Chen, Q. & Irwin, P. High-temperature capacitor polymer films. J. Electron. Mater. 43, 4569–4575 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Li, H. et al. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50, 6369–6400 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, C. et al. Flexible temperature-invariant polymer dielectrics with large bandgap. Adv. Mater. 32, 2000499 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chou, C. M. et al. Polymeric ladderphanes. J. Am. Chem. Soc. 131, 12579–12585 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luh, T. Y. Ladderphanes: a new type of duplex polymers. Acc. Chem. Res. 46, 378–389 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarjeant, W. J., Clelland, I. W. & Price, R. A. Capacitive components for power electronics. Proc. IEEE 89, 846–855 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Ho, J. S. & Greenbaum, S. G. Polymer capacitor dielectrics for high temperature applications. ACS Appl. Mater. Interfaces 10, 29189–29218 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, B. et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wang, G. et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121, 6124–6172 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T. et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 6, eaax6622 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Zhang, Z., Wang, D. H., Litt, M. H., Tan, L. S. & Zhu, L. High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide). Angew. Chem. Int. Edn 57, 1528–1531 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rabuffi, M. & Picci, G. Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 30, 1939–1942 (2002).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Ho, J. & Jow, T. R. High field conduction in biaxially oriented polypropylene at elevated temperature. IEEE Trans. Dielectr. Electr. Insul. 19, 990–995 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q. et al. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, C. et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, K. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Henry, A. Thermal transport in polymers. Annu. Rev. Heat Transf. 17, 485–520 (2014).

    Article 

    Google Scholar
     

  • Li, Z. et al. Solution-shearing of dielectric polymer with high thermal conductivity and electric insulation. Sci. Adv. 7, eabi7410 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Chen, J., Huang, X., Sun, B. & Jiang, P. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13, 337–345 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, A. M. et al. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat. Mater. 20, 1142–1148 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tomko, J. A. et al. Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nat. Nanotechnol. 13, 959–964 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Rational design and modification of high-k bis(double-stranded) block copolymer for high electrical energy storage capability. Chem. Mater. 30, 1102–1112 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C. H., Lai, G. Q. & Luh, T. Y. Aggregation-enhanced excimer emission of tetraarylethene linkers in ladderphanes. Macromolecules 54, 2134–2142 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • McKenna, K. P. & Shluger, A. L. Electron-trapping polycrystalline materials with negative electron affinity. Nat. Mater. 7, 859–862 (2008).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Meunier, M., Quirke, N. & Aslanides, A. Molecular modeling of electron traps in polymer insulators: chemical defects and impurities. J. Chem. Phys. 115, 2876–2881 (2001).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Luo, S. et al. Elaborately fabricated polytetrafluoroethylene film exhibiting superior high-temperature energy storage performance. Appl. Mater. Today 21, 100882 (2020).

    Article 

    Google Scholar
     

  • Cheng, S. et al. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Mater. 42, 445–453 (2021).

    Article 

    Google Scholar
     

  • Kim, G. H. et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Heywang, H. Physical and chemical processes in self-healing plastic capacitors. Colloid. Polym. Sci. 254, 139–147 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, L. et al. Cis, isotactic selective ROMP of norbornenes fused with N-arylpyrrolidines. Double stranded polynorbornene-based ladderphanes with Z-double bonds. Macromolecules 45, 8166–8171 (2012).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Chen, J. et al. Blocking-cyclization technique for precise synthesis of cyclic polymers with regulated topology. Nat. Commun. 9, 5310 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 09 (Gaussian, Inc., 2013).

  • Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Becke, A. D. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys. 96, 2155–2160 (1992).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Gross, E. K. U. & Kohn, W. Local density-functional theory of frequency-dependent linear response. Phys. Rev. Lett. 55, 2850–2852 (1985).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Polymer dielectrics with simultaneous ultrahigh energy density and low loss. Adv. Mater. 33, 2008198 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ieda, M. Dielectric breakdown process of polymers. IEEE Trans. Electr. Insul. EI-15, 206–224 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Deshmukh, A. A. et al. Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification. Energy Environ. Sci. 15, 1307–1314 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge–discharge efficiency. Energy Environ. Sci. 13, 1279–1286 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. High-κ polymers of intrinsic microporosity: a new class of high temperature and low loss dielectrics for printed electronics. Mater. Horiz. 7, 592–597 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Alamri, A. et al. Improving the rotational freedom of polyetherimide: enhancement of the dielectric properties of a commodity high-temperature polymer using a structural defect. Chem. Mater. 34, 6553–6558 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter 4, 2448–2459 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dong, J. et al. A facile in situ surface‐functionalization approach to scalable laminated high‐temperature polymer dielectrics with ultrahigh capacitive performance. Adv. Funct. Mater. 31, 2102644 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q. et al. Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures. Proc. Natl Acad. Sci. USA 113, 9995–10000 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Azizi, A. et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high‐temperature dielectric materials. Adv. Mater. 29, 1701864 (2017).

    Article 

    Google Scholar
     

  • Wang, P. et al. Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Adv. Mater. 33, 2103338 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, W. et al. Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small 15, e1901582 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Dai, Z. et al. Scalable polyimide-poly(amic acid) copolymer based nanocomposites for high-temperature capacitive energy storage. Adv. Mater. 34, 2101976 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ai, D. et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high‐temperature capacitive energy storage. Adv. Energy Mater. 10, 1903881 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kammermaier, J. Chemical processes during electrical breakdown in an organic dielectric with evaporated thin electrodes. IEEE Trans. Electr. Insul. EI-22, 145–149 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Tan, D. Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 30, 201808567 (2019).


    Google Scholar
     

  • Source link