April 24, 2024

Locally ordered representation of 3D space in the entorhinal cortex – Nature

  • 1.

    Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Finkelstein, A., Las, L. & Ulanovsky, N. 3-D maps and compasses in the brain. Annu. Rev. Neurosci. 39, 171–196 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Krupic, J., Burgess, N. & O’Keefe, J. Neural representations of location composed of spatially periodic bands. Science 337, 853–857 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    Stensola, T., Stensola, H., Moser, M.-B. & Moser, E. I. Shearing-induced asymmetry in entorhinal grid cells. Nature 518, 207–212 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Hayman, R., Verriotis, M. A., Jovalekic, A., Fenton, A. A. & Jeffery, K. J. Anisotropic encoding of three-dimensional space by place cells and grid cells. Nat. Neurosci. 14, 1182–1188 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Hayman, R. M., Casali, G., Wilson, J. J. & Jeffery, K. J. Grid cells on steeply sloping terrain: evidence for planar rather than volumetric encoding. Front. Psychol. 6, 925 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 7.

    Casali, G., Bush, D. & Jeffery, K. Altered neural odometry in the vertical dimension. Proc. Natl Acad. Sci. USA 116, 4631–4636 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 8.

    Yartsev, M. M., Witter, M. P. & Ulanovsky, N. Grid cells without theta oscillations in the entorhinal cortex of bats. Nature 479, 103–107 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Taube, J. S., Muller, R. U. & Ranck, J. B. Jr Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420–435 (1990).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 10.

    Sargolini, F. et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312, 758–762 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Finkelstein, A. et al. Three-dimensional head-direction coding in the bat brain. Nature 517, 159–164 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Solstad, T., Boccara, C. N., Kropff, E., Moser, M.-B. & Moser, E. I. Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Savelli, F., Yoganarasimha, D. & Knierim, J. J. Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18, 1270–1282 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Yartsev, M. M. & Ulanovsky, N. Representation of three-dimensional space in the hippocampus of flying bats. Science 340, 367–372 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 15.

    Hales, T. C. A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 16.

    Stella, F. & Treves, A. The self-organization of grid cells in 3D. eLife 4, e05913 (2015).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Mathis, A., Stemmler, M. B. & Herz, A. V. M. Probable nature of higher-dimensional symmetries underlying mammalian grid-cell activity patterns. eLife 4, e05979 (2015).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Horiuchi, T. K. & Moss, C. F. Grid cells in 3-D: reconciling data and models. Hippocampus 25, 1489–1500 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Boccara, C. N. et al. Grid cells in pre- and parasubiculum. Nat. Neurosci. 13, 987–994 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Krupic, J., Bauza, M., Burton, S. & O’Keefe, J. Local transformations of the hippocampal cognitive map. Science 359, 1143–1146 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Boccara, C. N., Nardin, M., Stella, F., O’Neill, J. & Csicsvari, J. The entorhinal cognitive map is attracted to goals. Science 363, 1443–1447 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Sanguinetti-Scheck, J. I. & Brecht, M. Home, head direction stability, and grid cell distortion. J. Neurophysiol. 123, 1392–1406 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Krupic, J., Bauza, M., Burton, S., Lever, C. & O’Keefe, J. How environment geometry affects grid cell symmetry and what we can learn from it. Phil. Trans. R. Soc. Lond. B 369, 20130188 (2013).

    Article 

    Google Scholar
     

  • 24.

    Stensola, H. et al. The entorhinal grid map is discretized. Nature 492, 72–78 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Kropff, E. & Treves, A. The emergence of grid cells: intelligent design or just adaptation? Hippocampus 18, 1256–1269 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Burak, Y. & Fiete, I. R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5, e1000291 (2009).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 27.

    McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M.-B. Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7, 663–678 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Fiete, I. R., Burak, Y. & Brookings, T. What grid cells convey about rat location. J. Neurosci. 28, 6858–6871 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 29.

    Mathis, A., Herz, A. V. M. & Stemmler, M. B. Resolution of nested neuronal representations can be exponential in the number of neurons. Phys. Rev. Lett. 109, 018103 (2012).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 30.

    Stemmler, M., Mathis, A. & Herz, A. V. M. Connecting multiple spatial scales to decode the population activity of grid cells. Sci. Adv. 1, e1500816 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Sarel, A., Finkelstein, A., Las, L. & Ulanovsky, N. Vectorial representation of spatial goals in the hippocampus of bats. Science 355, 176–180 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 32.

    Omer, D. B., Maimon, S. R., Las, L. & Ulanovsky, N. Social place-cells in the bat hippocampus. Science 359, 218–224 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Ulanovsky, N. & Moss, C. F. Hippocampal cellular and network activity in freely moving echolocating bats. Nat. Neurosci. 10, 224–233 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Yovel, Y., Falk, B., Moss, C. F. & Ulanovsky, N. Optimal localization by pointing off axis. Science 327, 701–704 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Henriksen, E. J. et al. Spatial representation along the proximodistal axis of CA1. Neuron 68, 127–137 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Larsen, P. M., Schmidt, S. & Schiøtz, J. Robust structural identification via polyhedral template matching. Model. Simul. Mater. Sci. Eng. 24, 055007 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 39.

    Brandon, M. P. et al. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332, 595–599 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 40.

    Koenig, J., Linder, A. N., Leutgeb, J. K. & Leutgeb, S. The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332, 592–595 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 41.

    Hansen, J.-P. & Verlet, L. Phase transitions of the Lennard-Jones system. Phys. Rev. 184, 151–161 (1969).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 42.

    Langston, R. F. et al. Development of the spatial representation system in the rat. Science 328, 1576–1580 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 43.

    Wills, T. J., Cacucci, F., Burgess, N. & O’Keefe, J. Development of the hippocampal cognitive map in preweanling rats. Science 328, 1573–1576 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 44.

    Eliav, T. et al. Nonoscillatory phase coding and synchronization in the bat hippocampal formation. Cell 175, 1119–1130 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 45.

    Derdikman, D. et al. Fragmentation of grid cell maps in a multicompartment environment. Nat. Neurosci. 12, 1325–1332 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 46.

    Torquato, S. & Stillinger, F. H. Jammed hard-particle packings: from Kepler to Bernal and beyond. Rev. Mod. Phys. 82, 2633 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 47.

    D’Albis, T. & Kempter, R. A single-cell spiking model for the origin of grid-cell patterns. PLoS Comput. Biol. 13, e1005782 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 48.

    Monsalve-Mercado, M. M. & Leibold, C. Hippocampal spike-timing correlations lead to hexagonal grid fields. Phys. Rev. Lett. 119, 038101 (2017).

    ADS 
    MathSciNet 
    PubMed 
    Article 

    Google Scholar
     

  • 49.

    Weber, S. N. & Sprekeler, H. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity. eLife 7, e34560 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Yoon, K. et al. Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat. Neurosci. 16, 1077–1084 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 51.

    Guanella, A., Kiper, D. & Verschure, P. A model of grid cells based on a twisted torus topology. Int. J. Neural Syst. 17, 231–240 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • 52.

    Fuhs, M. C. & Touretzky, D. S. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26, 4266–4276 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 53.

    Klukas, M., Lewis, M. & Fiete, I. Efficient and flexible representation of higher-dimensional cognitive variables with grid cells. PLoS Comput. Biol. 16, e1007796 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 54.

    Burak, Y. & Fiete, I. Do we understand the emergent dynamics of grid cell activity? J. Neurosci. 26, 9352–9354 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 55.

    Rowland, D. C., Roudi, Y., Moser, M.-B. & Moser, E. I. Ten years of grid cells. Annu. Rev. Neurosci. 39, 19–40 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Source link