April 25, 2024
Optical superluminal motion measurement in the neutron-star merger GW170817 – Nature

Optical superluminal motion measurement in the neutron-star merger GW170817 – Nature

  • Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mooley, K. P. et al. A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature 554, 207–210 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mooley, K. P. et al. Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561, 355–359 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghirlanda, G. et al. Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science 363, 968–971 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajela, A. et al. Two years of nonthermal emission from the binary neutron star merger GW170817: rapid fading of the jet afterglow and first constraints on the kilonova fastest ejecta. Astrophys. J. Lett. 886, L17 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Troja, E. et al. A thousand days after the merger: continued X-ray emission from GW170817. Mon. Not. R. Astron. Soc. 498, 5643–5651 (2020).

  • Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017).

    ADS 

    Google Scholar
     

  • Fong, W. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VIII. A comparison to cosmological short-duration gamma-ray bursts. Astrophys. J. Lett. 848, L23 (2017).

    ADS 

    Google Scholar
     

  • Gaia Collaboration Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  • Gaia Collaboration Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

  • Cantiello, M. et al. A precise distance to the host galaxy of the binary neutron star merger GW170817 using surface brightness fluctuations. Astrophys. J. Lett. 854, L31 (2018).

    ADS 

    Google Scholar
     

  • Hjorth, J. et al. The distance to NGC 4993: the host galaxy of the gravitational-wave event GW170817. Astrophys. J. Lett. 848, L31 (2017).

    ADS 

    Google Scholar
     

  • Mooley, K. P. et al. A strong jet signature in the late-time lightcurve of GW170817. Astrophys. J. Lett. 868, L11 (2018).

  • Makhathini, S. et al. The panchromatic afterglow of GW170817: the full uniform data set, modeling, comparison with previous results, and implications. Astrophys. J. 922, 154 (2021).

  • Gill, R., Granot, J., De Colle, F. & Urrutia, G. Numerical simulations of an initially top-hat jet and the afterglow of GW170817/GRB170817A. Astrophys. J. 883, 15 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Lamb, G. P., Levan, A. J. & Tanvir, N. R. GRB 170817A as a refreshed shock afterglow viewed off-axis. Astrophys. J. 899, 105 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Blandford, R. D. & McKee, C. F. Fluid dynamics of relativistic blast waves. Phys. Fluids 19, 1130–1138 (1976).

    ADS 
    MATH 

    Google Scholar
     

  • Beniamini, P., Granot, J. & Gill, R. Afterglow light curves from misaligned structured jets. Mon. Not. R. Astron. Soc. 493, 3521–3534 (2020).

    ADS 

    Google Scholar
     

  • Granot, J. & Kumar, P. Constraining the structure of gamma-ray burst jets through the afterglow light curves. Astrophys. J. 591, 1086–1096 (2003).

    ADS 

    Google Scholar
     

  • Lu, W., Beniamini, P. & McDowell, A. Deceleration of relativistic jets with lateral expansion. Preprint at https://arxiv.org/abs/2005.10313 (2020).

  • Lithwick, Y. & Sari, R. Lower limits on Lorentz factors in gamma-ray bursts. Astrophys. J. 555, 540–545 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Nakar, E. Short-hard gamma-ray bursts. Phys. Rep. 442, 166–236 (2007).

    ADS 

    Google Scholar
     

  • Ghirlanda, G. et al. Bulk Lorentz factors of gamma-ray bursts. Astron. Astrophys. 609, A112 (2018).


    Google Scholar
     

  • Matsumoto, T., Nakar, E. & Piran, T. Generalized compactness limit from an arbitrary viewing angle. Mon. Not. R. Astron. Soc. 486, 1563–1573 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Hotokezaka, K. et al. A Hubble constant measurement from superluminal motion of the jet in GW170817. Nat. Astron. 3, 940–944 (2019).

    ADS 

    Google Scholar
     

  • Fender, R. in Compact Stellar X-ray Sources (eds Lewin, W. & van der Klis, M.) Cambridge Astrophysics Series, No. 39, 381–420 (Cambridge Univ. Press, 2006).

  • Lister, M. L. et al. MOJAVE. X. Parsec-scale jet orientation variations and superluminal motion in active galactic nuclei. Astron. J. 146, 120 (2013).

    ADS 

    Google Scholar
     

  • Mattila, S. et al. A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger. Science 361, 482–485 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • VizieR Online Data Catalog: Gaia EDR3 I/350 (Gaia Collaboration, 2020); https://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=I/350/gaiaedr3

  • Anderson, J. Empirical Models for the WFC3/IR PSF Space Telescope WFC Instrument Science Report (2016).

  • Bellini, A., Anderson, J. & Bedin, L. R. Astrometry and photometry with HST WFC3. II. Improved geometric-distortion corrections for 10 filters of the UVIS channel. Publ. Astron. Soc. Pac. 123, 622 (2011).

    ADS 

    Google Scholar
     

  • Dobie, D. et al. A turnover in the radio light curve of GW170817. Astrophys. J. Lett. 858, L15 (2018).

    ADS 

    Google Scholar
     

  • Alexander, K. D. et al. A decline in the X-Ray through radio emission from GW170817 continues to support an off-axis structured jet. Astrophys. J. Lett. 863, L18 (2018).

    ADS 

    Google Scholar
     

  • Troja, E. et al. The outflow structure of GW170817 from late-time broad-band observations. Mon. Not. R. Astron. Soc. 478, L18–L23 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Lamb, G. P. et al. The optical afterglow of GW170817 at one year post-merger. Astrophys. J. Lett. 870, L15 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Fong, W. et al. The optical afterglow of GW170817: an off-axis structured jet and deep constraints on a globular cluster origin. Astrophys. J. Lett. 883, L1 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Piro, L. et al. A long-lived neutron star merger remnant in GW170817: constraints and clues from X-ray observations. Mon. Not. R. Astron. Soc. 483, 1912–1921 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Greisen, E. W. in Information Handling in Astronomy—Historical Vistas Astrophysics and Space Science Library Vol. 285 (ed. Heck, A.) 109–125 (Springer, 2003).

  • Radio Fundamental Catalog (Astrogeo Center, 2022); http://astrogeo.org/rfc/

  • Walker, R. C. The SCHED User Manual Version 11.7 (NRAO, 2022); http://www.aoc.nrao.edu/software/sched

  • A SCHED Source Catalog (NRAO, 2021); http://www.vlba.nrao.edu/astro/calib/sources_allfreq.icrf3

  • Pradel, N., Charlot, P. & Lestrade, J.-F. Astrometric accuracy of phase-referenced observations with the VLBA and EVN. Astron. Astrophys. 452, 1099–1106 (2006).

    ADS 

    Google Scholar
     

  • Radio Fundamental Catalog version rfc_2021b (Astrogeo Center, 2021); http://astrogeo.org/sol/rfc/rfc_2021b

  • Kovalev, Y. Y., Petrov, L. & Plavin, A. V. VLBI-Gaia offsets favor parsec-scale jet direction in active galactic nuclei. Astron. Astrophys. 598, L1 (2017).

    ADS 

    Google Scholar
     

  • Petrov, L. & Kovalev, Y. Y. On significance of VLBI/Gaia position offsets. Mon. Not. R. Astron. Soc. 467, L71–L75 (2017).

    ADS 

    Google Scholar
     

  • Petrov, L., Kovalev, Y. Y. & Plavin, A. V. A quantitative analysis of systematic differences in the positions and proper motions of Gaia DR2 with respect to VLBI. Mon. Not. R. Astron. Soc. 482, 3023–3031 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Charlot, P. et al. The third realization of the International Celestial Reference Frame by very long baseline interferometry. Astron. Astrophys. 644, A159 (2020).

    CAS 

    Google Scholar
     

  • Gaia Collaboration Gaia Data Release 2. The Celestial Reference Frame (Gaia-CRF2). Astron. Astrophys. 616, A14 (2018).

  • Liu, J. C., Zhu, Z. & Liu, N. Link between the VLBI and Gaia reference frames. Astron. J. 156, 13 (2018).

    ADS 

    Google Scholar
     

  • Liu, N., Lambert, S. B., Zhu, Z. & Liu, J. C. Systematics and accuracy of VLBI astrometry: a comparison with Gaia Data Release 2. Astron. Astrophys. 634, A28 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Deller, A. et al. LIGO/Virgo G298048: milliarcsecond imaging o f the NGC 4993 central radio source. GRB Coordinates Network 21897 (2017).

  • Granot, J., Miller, M., Piran, T., Suen, W. M. & Hughes, P. A. in Gamma-ray Bursts in the Afterglow Era (eds Costa, E. et al.) 312–315 (Springer, 2001).

  • Kumar, P. & Granot, J. The evolution of a structured relativistic jet and gamma-ray burst afterglow light curves. Astrophys. J. 591, 1075–1085 (2003).

    ADS 

    Google Scholar
     

  • Zhang, W. & MacFadyen, A. The dynamics and afterglow radiation of gamma-ray bursts. I. Constant density medium. Astrophys. J. 698, 1261–1272 (2009).

    ADS 

    Google Scholar
     

  • van Eerten, H., Zhang, W. & MacFadyen, A. Off-axis gamma-ray burst afterglow modeling based on a two-dimensional axisymmetric hydrodynamics simulation. Astrophys. J. 722, 235–247 (2010).

    ADS 

    Google Scholar
     

  • De Colle, F., Ramirez-Ruiz, E., Granot, J. & Lopez-Camara, D. Simulations of gamma-ray burst jets in a stratified external medium: dynamics, afterglow light curves, jet breaks, and radio calorimetry. Astrophys. J. 751, 57 (2012).

    ADS 

    Google Scholar
     

  • Duffell, P. C. & Laskar, T. On the deceleration and spreading of relativistic jets. I. Jet dynamics. Astrophys. J. 865, 94 (2018).

    ADS 

    Google Scholar
     

  • Fernández, J. J., Kobayashi, S. & Lamb, G. P. Lateral spreading effects on VLBI radio images of neutron star merger jets. Mon. Not. R. Astron. Soc. 509, 395–405 (2022).

    ADS 

    Google Scholar
     

  • Kumar, P. & Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 561, 1–109 (2015).

    ADS 

    Google Scholar
     

  • Margutti, R. et al. The binary neutron star event LIGO/Virgo GW170817 160 days after merger: synchrotron emission across the electromagnetic spectrum. Astrophys. J. Lett. 856, L18 (2018).

    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    ADS 

    Google Scholar
     

  • Takahashi, K. & Ioka, K. Inverse reconstruction of jet structure from off-axis gamma-ray burst afterglows. Mon. Not. R. Astron. Soc. 497, 1217–1235 (2020).

  • Zhang, B. & Mészáros, P. Gamma-ray burst beaming: a universal configuration with a standard energy reservoir? Astrophys. J. 571, 876–879 (2002).

    ADS 

    Google Scholar
     

  • Rossi, E., Lazzati, D. & Rees, M. J. Afterglow light curves, viewing angle and the jet structure of γ-ray bursts. Mon. Not. R. Astron. Soc. 332, 945–950 (2002).

    ADS 

    Google Scholar
     

  • Gottlieb, O., Nakar, E. & Bromberg, O. The structure of hydrodynamic γ-ray burst jets. Mon. Not. R. Astron. Soc. 500, 3511–3526 (2021).

    ADS 

    Google Scholar
     

  • Ramirez-Ruiz, E., Andrews, J. J. & Schrøder, S. L. Did GW170817 harbor a pulsar? Astrophys. J. Lett. 883, L6 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Panaitescu, A. & Kumar, P. Properties of relativistic jets in gamma-ray burst afterglows. Astrophys. J. 571, 779–789 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Nakar, E., Piran, T. & Granot, J. The detectability of orphan afterglows. Astrophys. J. 579, 699–705 (2002).

    ADS 

    Google Scholar
     

  • kmooley / GW170817. GitHub https://github.com/kmooley/GW170817/ (2021).

  • Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    ADS 

    Google Scholar
     

  • Abbott, B. P. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017).

    ADS 

    Google Scholar
     

  • Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. Lett. 848, L17 (2017).

    ADS 

    Google Scholar
     

  • Tanvir, N. R. et al. The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys. J. Lett. 848, L27 (2017).

    ADS 

    Google Scholar
     

  • Hajela, A. et al. Evidence for X-ray emission in excess to the jet-afterglow decay 3.5 yr after the binary neutron star merger GW 170817: a new emission component. Astrophys. J. Lett. 927, L17 (2022).

    ADS 

    Google Scholar
     

  • Troja, E. et al. Accurate flux calibration of GW170817: is the X-ray counterpart on the rise? Mon. Not. R. Astron. Soc. 510, 1902–1909 (2022).

    ADS 

    Google Scholar
     

  • Balasubramanian, A. et al. Continued radio observations of GW170817 3.5 yr post-merger. Astrophys. J. Lett. 914, L20 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Villar, V. A. et al. The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. Lett. 851, L21 (2017).

    ADS 

    Google Scholar
     

  • Source link