March 28, 2023
Optimal nitrogen rate strategy for sustainable rice production in China – Nature

Optimal nitrogen rate strategy for sustainable rice production in China – Nature

  • Guo, Y. et al. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nat. Food 1, 648–658 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Environmental impacts of nitrogen emissions in China and the role of policies in emission reduction. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 20190324 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yin, Y. et al. A steady-state N balance approach for sustainable smallholder farming. Proc. Natl Acad. Sci. USA 118, e2106576118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, Y. et al. Calculating socially optimal nitrogen (N) fertilization rates for sustainable N management in China. Sci. Total Environ. 688, 1162–1171 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexandratos, N. (ed.) World Food and Agriculture to 2030/50. Highlights and Views from Mid-2009 (FAO, 2009).

  • Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).

    Article 

    Google Scholar
     

  • Jenkinson, D. S. The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 228, 3–15 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Lee, M., Shevliakova, E., Stock, C. A., Malyshev, S. & Milly, P. C. D. Prominence of the tropics in the recent rise of global nitrogen pollution. Nat. Commun. 10, 1437 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutton, M. A. et al. Our Nutrient World. The Challenge to Produce More Food and Energy with Less Pollution (Centre for Ecology and Hydrology, 2013).

  • Hill, J. et al. Air-quality-related health damages of maize. Nat. Sustain. 2, 397–403 (2019).

    Article 

    Google Scholar
     

  • Sobota, D. J., Compton, J. E., McCrackin, M. L. & Singh, S. Cost of reactive nitrogen release from human activities to the environment in the United States. Environ. Res. Lett. 10, 025006 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Keeler, B. L. et al. The social costs of nitrogen. Sci. Adv. 2, e1600219 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobermann, A. et al. Responsible plant nutrition: a new paradigm to support food system transformation. Global Food Secur. 33, 100636 (2022).

    Article 

    Google Scholar
     

  • Zhang, D. et al. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agric. Ecosyst. Environ. 265, 8–14 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Conant, R. T., Berdanier, A. B. & Grace, P. R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Global Biogeochem. Cycles 27, 558–566 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Circular of the Ministry of Agriculture on Printing and Distributing the Action Plan for Zero Growth in the Application of Fertilizer by 2020 and the Action Plan for Zero Growth in the Application of Pesticide by 2020 (Ministry of Agriculture, 2015).

  • Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, X., Xia, L. & Ti, C. Temporal and spatial variations in nitrogen use efficiency of crop production in China. Environ. Pollut. 293, 118496 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanter, D. R. & Searchinger, T. D. A technology-forcing approach to reduce nitrogen pollution. Nat. Sustain. 1, 544–552 (2018).

    Article 

    Google Scholar
     

  • Wu, L., Chen, X., Cui, Z., Wang, G. & Zhang, W. Improving nitrogen management via a regional management plan for Chinese rice production. Environ. Res. Lett. 10, 095011 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Cui, Z., Chen, X. & Zhang, F. Development of regional nitrogen rate guidelines for intensive cropping systems in China. Agron. J. 105, 1411–1416 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, X., Nafziger, E. D. & Pittelkow, C. M. Nitrogen rate strategies for reducing yield-scaled nitrous oxide emissions in maize. Environ. Res. Lett. 12, 124006 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Sachs, J. D. et al. Six transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2, 805–814 (2019).

    Article 

    Google Scholar
     

  • Cai, S., Pittelkow, C. M., Zhao, X. & Wang, S. Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits. J. Cleaner Prod. 195, 289–300 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Maximum N Application Rate for Rice in China (Department of Crop Production, 2020).

  • United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019. Volume I: Comprehensive Tables (United Nations, 2019).

  • de Vries, W., Kros, J., Kroeze, C. & Seitzinger, S. P. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 5, 392–402 (2013).

    Article 

    Google Scholar
     

  • Leip, A., Britz, W., Weiss, F. & de Vries, W. Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI. Environ. Pollut. 159, 3243–3253 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C., Lu, M., Cui, J., Li, B. & Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biol. 20, 1366–1381 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Pan, G. et al. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agric. Ecosyst. Environ. 131, 274–280 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Yan, X., Yagi, K., Akiyama, H. & Akimoto, H. Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biol. 11, 1131–1141 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Pittelkow, C. M. et al. Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agric. Ecosyst. Environ. 177, 10–20 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sawyer, J. et al. Concepts and Rationale for Regional Nitrogen Rate Guidelines for Corn (Iowa State University Extension and Outreach, 2006).

  • Qiao, L. et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Change 12, 574–580 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kuhn, T. et al. Coupling crop and bio-economic farm modelling to evaluate the revised fertilization regulations in Germany. Agric. Syst. 177, 102687 (2020).

    Article 

    Google Scholar
     

  • Pan, D., Tang, J., Zhang, L., He, M. & Kung, C.-C. The impact of farm scale and technology characteristics on the adoption of sustainable manure management technologies: evidence from hog production in China. J. Cleaner Prod. 280, 124340 (2021).

    Article 

    Google Scholar
     

  • Wu, Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Urbanization can benefit agricultural production with large-scale farming in China. Nat. Food 2, 183–191 (2021).

    Article 

    Google Scholar
     

  • Kanter, D. R. et al. Nitrogen pollution policy beyond the farm. Nat. Food 1, 27–32 (2020).

    Article 

    Google Scholar
     

  • Huang, J., Wang, X. & Rozelle, S. The subsidization of farming households in China’s agriculture. Food Policy 41, 124–132 (2013).

    Article 

    Google Scholar
     

  • Roberts, T., Ross, W., Norman, R., Slaton, N. & Wilson, C. Jr Predicting nitrogen fertilizer needs for rice in Arkansas using alkaline hydrolyzable‐nitrogen. Soil Sci. Soc. Am. J. 75, 1161–1171 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, S. et al. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in Northeast China. Remote Sens. 7, 10646–10667 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Purba, J. et al. Site-specific fertilizer nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor. Precis. Agric. 16, 455–475 (2015).

    Article 

    Google Scholar
     

  • Xia, L. et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biol. 23, 1917–1925 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Rural Social Economic Investigation Department of National Bureau of Statistics. China Rural Statistical Yearbook (China Statistics Press, 2019).

  • China Agricultural Yearbook Editorial Committee. China Agricultural Yearbook 2016 (China Agriculture Press, 2017).

  • Zuur, A. F., Ieno, E. N., Walker, N. P. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

  • R Core Team. R: A Language and Environment for Statistical Computing, Vol. 1 (R Foundation for Statistical Computing, 2014).

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar
     

  • Bolker, B. M. Ecological Models and Data in R (Princeton Univ. Press; 2008).

  • IPCC. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Vol. 4 (Cambridge Univ. Press, 2021).

  • Zhu, Z.-l. in Nitrogen in Soils of China (eds Zhu, Z.-l., Wen, Q.-x. & Freney, J. R.) 323–338 (Springer, 1997).

  • Xu, W. et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmos. Chem. Phys. 15, 12345–12360 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • China National Environmental Monitoring Centre, weekly. http://www.cnemc.cn/sssj/szzdjczb/ (CNEMC, 2020).

  • He, G., Wang, Z. & Cui, Z. Managing irrigation water for sustainable rice production in China. J. Cleaner Prod. 245, 118928 (2020).

    Article 

    Google Scholar
     

  • Food and Agriculture Organization of the United Nations. Technical Conversion Factors for Agricultural Commodities (FAO, 2017).

  • He, W. et al. Estimating soil nitrogen balance at regional scale in China’s croplands from 1984 to 2014. Agric. Syst. 167, 125–135 (2018).

    Article 

    Google Scholar
     

  • Zhu, Z.-l. in Nitrogen in Soils of China (eds Zhu, Z.-l., Wen, Q.-x. & Freney, J. R.) 239–279 (Springer, 1997).

  • Zhang, A. et al. Using side-dressing technique to reduce nitrogen leaching and improve nitrogen recovery efficiency under an irrigated rice system in the upper reaches of Yellow River Basin, Northwest China. J. Integr. Agric. 15, 220–231 (2016).

    Article 

    Google Scholar
     

  • Source link