September 7, 2024
Plasticity in single-crystalline Mg3Bi2 thermoelectric material – Nature

Plasticity in single-crystalline Mg3Bi2 thermoelectric material – Nature

  • Gelbstein, Y. et al. Physical, mechanical, and structural properties of highly efficient nanostructured n- and p-silicides for practical thermoelectric applications. J. Electron. Mater. 43, 1703–1711 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Gahlawat, S., White, K., Ren, Z., Kogo, Y. & Iida, T. in Advanced Thermoelectrics, Materials, Contacts, Devices, and Systems (eds Zhifeng, R. et al.) 555–602 (CRC Press, 2017).

  • Yang, Q. et al. Flexible thermoelectrics based on ductile semiconductors. Science 377, 854–858 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hu, H., Wang, Y., Fu, C., Zhao, X. & Zhu, T. Achieving metal-like malleability and ductility in Ag2Te1−xSx inorganic thermoelectric semiconductors with high mobility. The Innovation 3, 100341 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peter, Y. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties (Springer Science & Business Media, 2010).

  • Shi, X. et al. Room-temperature ductile inorganic semiconductor. Nat. Mater. 17, 421–426 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Oshima, Y., Nakamura, A. & Matsunaga, K. Extraordinary plasticity of an inorganic semiconductor in darkness. Science 360, 772–774 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, T.-R. et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 369, 542–545 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gao, Z. et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nat. Commun. 13, 7491 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hong, S. et al. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Mao, J., Chen, G. & Ren, Z. Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Shi, J., Guo, Z. & Sui, M. Slip system determination of dislocations in a-Ti during in situ TEM tensile deformation. Acta Metall. Sin. 52, 71–77 (2016).


    Google Scholar
     

  • Partridge, P. The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 12, 169–194 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Chin, G. Y. & Mammel, W. L. Competition among basal, prism, and pyramidal slip modes in hcp metals. Metall. Trans. 1, 357–361 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, M. H. Slip twinning, and fracture in hexagonal close-packed metals. Metall. Mater. Trans. 12, 409–418 (1981).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Li, G. et al. Ductile deformation mechanism in semiconductor Ag2S. npj Comput. Mater. 4, 44 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ando, S. & Tonda, H. Non-basal slips in magnesium and magnesium-lithium alloy single crystals. Mater. Sci. Forum 350–351, 43–48 (2000).

  • Agnew, S., Yoo, M. & Tome, C. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 49, 4277–4289 (2001).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Chino, Y., Kado, M. & Mabuchi, M. Compressive deformation behavior at room temperature-773 K in Mg-0.2 mass% (0.035 at.%) Ce alloy. Acta Mater. 56, 387–394 (2008).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Al-Samman, T. & Li, X. Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater. Sci. Eng. A 528, 3809–3822 (2011).

    Article 

    Google Scholar
     

  • Sandlöbes, S. et al. Ductility improvement of Mg alloys by solid solution: ab initio modeling, synthesis and mechanical properties. Acta Mater. 70, 92–104 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Atomic Reference Data for Electronic Structure Calculations, Atomic Total Energies and Eigenvalues (NIST, 2015); https://www.nist.gov/pml/atomic-reference-data-electronic-structure-calculations/atomic-reference-data-electronic-7.

  • Schäfer, H., Eisenmann, B. & Müller, W. Zintl phases: transitions between metallic and ionic bonding. Angew. Chem. Int. Ed. 12, 694–712 (1973).

    Article 

    Google Scholar
     

  • Zhang, J. et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 8, 13901 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Mao, J. et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Goto, Y. et al. Band anisotropy generates axis-dependent conduction polarity of Mg3Sb2 and Mg3Bi2. Chem. Mater. 36, 2018–2026 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Loebner, E. E. Thermoelectric power of carbons and graphite. Phys. Rev. 84, 153–153 (1951).

    Article 
    ADS 

    Google Scholar
     

  • Saunders, G. A., Miziumski, C., Cooper, G. S. & Lawson, A. The Seebeck coefficients of antimony and arsenic single crystals. J. Phys. Chem. Solids 26, 1299–1303 (1965).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Shang, H. et al. N-type Mg3Sb2−xBix with improved thermal stability for thermoelectric power generation. Acta Mater. 201, 572–579 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Li, A. et al. Chemical stability and degradation mechanism of Mg3Sb2−xBix thermoelectrics towards room-temperature applications. Acta Mater. 239, 118301 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, X. et al. Revealing the chemical instability of Mg3Sb2−xBix-based thermoelectric materials. ACS Appl. Mater. Interfaces 15, 50216–50224 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamaki, H., Sato, H. K. & Kanno, T. Isotropic conduction network and defect chemistry in Mg3Sb2-based layered Zintl compounds with high thermoelectric performance. Adv. Mater. 28, 10182–10187 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno, S. et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule 2, 141–154 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Peng, H., Yang, Z.-H., Perdew, J. P. & Sun, J. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys. Rev. X 6, 041005 (2016).


    Google Scholar
     

  • Dronskowski, R. & Blöchl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical‐bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Singh, D. J. Electronic structure calculations with the Tran–Blaha modified Becke–Johnson density functional. Phys. Rev. B 82, 205102 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Yates, J. R., Wang, X., Vanderbilt, D. & Souza, I. Spectral and Fermi surface properties from Wannier interpolation. Phys. Rev. B 75, 195121 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Mostofi, A. A. et al. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Mostofi, A. A. et al. An updated version of Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17, 176–179 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Y. et al. High-throughput deformation potential and electrical transport calculations. npj Comput. Mater. 9, 190 (2023).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Madsen, G. K., Carrete, J. & Verstraete, M. J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Source link