June 8, 2023
Primary N2–He gas field formation in intracratonic sedimentary basins – Nature

Primary N2–He gas field formation in intracratonic sedimentary basins – Nature

  • Aggarwal, P. K. et al. Continental degassing of 4He by surficial discharge of deep groundwater. Nat. Geosci. 8, 35–39 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andrews, J. et al. Radioelements, radiogenic helium and age relationships for groundwaters from the granites at Stripa, Sweden. Geochim. Cosmochim. Acta 46, 1533–1543 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sleep, N., Meibom, A., Fridriksson, T., Coleman, R. & Bird, D. H2-rich fluids from serpentinisation: geochemical and biotic implications. Proc. Natl Acad. Sci. USA 101, 12818–12823 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, L.-H. et al. Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479–482 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sherwood Lollar, B., Onstott, T., Lacrampe-Couloume, G. & Ballentine, C. The contribution of the Precambrian continental lithosphere to global H2 production. Nature 516, 379–382 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Danabalan, D. et al. The principles of helium exploration. Pet. Geosci. https://doi.org/10.1144/petgeo2021-029 (2022).

  • Cheng, A. et al. Determining the role of diffusion and basement flux in controlling 4He distribution in sedimentary basin fluids. Earth Planet. Sci. Lett. 574, 117175 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mamyrin, B. A. & Tolstikhin, I. N. Helium Isotopes in Nature (Elsevier, 2013).

  • Ballentine, C. J. & Burnard, P. G. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem. 47, 481–538 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L.-H., Slater, G. F., Sherwood Lollar, B., Lacrampe-Couloume, G. & Onstott, T. C. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim. Cosmochim. Acta 69, 893–903 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gold, T. & Held, M. Helium–nitrogen–methane systematics in natural gases of Texas and Kansas. J. Pet. Geol 10, 415–424 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Ballentine, C. J. & Sherwood Lollar, B. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA. Geochim. Cosmochim. Acta 66, 2483–2497 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boreham, C. J. et al. Helium in the Australian liquefied natural gas economy. APPEA J. 58, 209–237 (2018).

    Article 

    Google Scholar
     

  • Kotarba, M. J. & Nagao, K. Composition and origin of natural gases accumulated in the Polish and Ukrainian parts of the Carpathian region: gaseous hydrocarbons, noble gases, carbon dioxide and nitrogen. Chem. Geol. 255, 426–438 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Regenspurg, S. et al. Geochemical properties of saline geothermal fluids from the in-situ geothermal laboratory Groß Schönebeck (Germany). Geochemistry 70, 3–12 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Hiyagon, H. & Kennedy, B. Noble gases in CH4-rich gas fields, Alberta, Canada. Geochim. Cosmochim. Acta 56, 1569–1589 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jenden, P., Kaplan, I., Poreda, R. & Craig, H. Origin of nitrogen-rich natural gases in the California Great Valley: evidence from helium, carbon and nitrogen isotope ratios. Geochim. Cosmochim. Acta 52, 851–861 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, L. et al. N2 in deep subsurface fracture fluids of the Canadian Shield: source and possible recycling processes. Chem. Geol. 585, 120571 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Karolytė, R. et al. The role of porosity in H2/He production ratios in fracture fluids from the Witwatersrand Basin, South Africa. Chem. Geol. 595, 120788 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Holland, G. et al. Deep fracture fluids isolated in the crust since the Precambrian era. Nature 497, 357–360 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Warr, O. et al. Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases. Geochim. Cosmochim. Acta 222, 340–362 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Warr, O., Giunta, T., Ballentine, C. J. & Sherwood Lollar, B. Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments. Chem. Geol. 530, 119322 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Torgersen, T. Continental degassing flux of 4He and its variability. Geochem. Geophys. Geosyst. 11, Q06002 (2010).

  • Torgersen, T. & Clarke, W. Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim. Cosmochim. Acta 49, 1211–1218 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Torgersen, T., Habermehl, M. & Clarke, W. Crustal helium fluxes and heat flow in the Great Artesian Basin, Australia. Chem. Geol. 102, 139–152 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Castro, M. C., Goblet, P., Ledoux, E., Violette, S. & de Marsily, G. Noble gases as natural tracers of water circulation in the Paris Basin: 2. Calibration of a groundwater flow model using noble gas isotope data. Water Resour. Res. 34, 2467–2483 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Byrne, D., Barry, P., Lawson, M. & Ballentine, C. The use of noble gas isotopes to constrain subsurface fluid flow and hydrocarbon migration in the East Texas Basin. Geochim. Cosmochim. Acta 268, 186–208 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lowenstern, J. B., Evans, W. C., Bergfeld, D. & Hunt, A. G. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone. Nature 506, 355–358 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bare, S. R. The Helium Crisis. APS Phys. https://www.aps.org/policy/analysis/helium-crisis.cfm (2016).

  • Gluyas, J. G. The emergence of the helium industry. The history of helium exploration, Part 1. AAPG Explorer January 2019 16–17 (2019).

  • Gluyas, J. G. Helium shortages and emerging helium provinces. The history of helium exploration, Part 2. AAPG Explorer February 2019 18–19 (2019).

  • Sorenson, R. P. J. A. B. A dynamic model for the Permian Panhandle and Hugoton fields, western Anadarko Basin. AAPG Bull. 89, 921–938 (2005).

  • Ferguson, G. et al. The persistence of brines in sedimentary basins. Geophys. Res. Lett. 45, 4851–4858 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Radiogenic helium concentration and isotope variations in crustal gas pools from Sichuan Basin, China. Appl. Geochem. 117, 104586 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anderson, C. C. & Hinson, H. H. Helium-Bearing Natural Gases of the United States: Analyses and Analytical Methods Bulletin 486 (US Bureau of Mines, 1951).

  • Harris, D. C. & Baranoski, M. T. Cambrian Pre-Knox Group Play in the Appalachian Basin (Ohio Division of Geological Survey, 1997).

  • Mao, S. & Duan, Z. A thermodynamic model for calculating nitrogen solubility, gas phase composition and density of the N2–H2O–NaCl system. Fluid Phase Equilib. 248, 103–114 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Yurkowski, M. M. Helium in Southwestern Saskatchewan: Accumulation and Geological Setting Open File Report 1 (Saskatchewan Ministry of the Economy, Saskatchewan Geological Survey, 2016).

  • Danabalan, D. Helium: Exploration Methodology for a Strategic Resource (Durham Univ., 2017).

  • Thompson, J. The occurrence of helium in the Cambrian near Swift Current, Saskatchewan. Third International Williston Basin Symposium 179–184 (1964).

  • Snyder, G. L. Map of Precambrian and adjacent Phanerozoic rocks of the Hartville uplift, Goshen, Niobrara, and Platte counties, Wyoming Report No. 2331-1258 (1980).

  • Munnerlyn, R. D. & Miller, R. D. Helium-Bearing Natural Gases of the United States: Analyses, Second Supplement to Bulletin 486 Bulletin 617 (US Bureau of Mines, 1963).

  • Bachu, S. & Hitchon, B. Regional-scale flow of formation waters in the Williston Basin. AAPG Bull. 80, 248–264 (1996).

    CAS 

    Google Scholar
     

  • Zhu, C. & Hajnal, Z. Tectonic development of the northern Williston Basin: a seismic interpretation of an east-west regional profile. Can. J. Earth Sci. 30, 621–630 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Kent, D. in Geological Atlas of the Western Canada Sedimentary Basin (eds Mossop, G. D. & Shetsen, I.) 69–86 (Canadian Society of Petroleum Geologists and Alberta Research Council, 1994).

  • Price, R. in Geological Atlas of the Western Canada Sedimentary Basin (eds Mossop, G. D. & Shetsen, I.) 13–24 (Canadian Society of Petroleum Geologists and Alberta Research Council, 1994).

  • Wright, G., McMechan, M. & Potter, D. in Geological Atlas of the Western Canada Sedimentary Basin (eds Mossop, G. D. & Shetsen, I.) 25–40 (Canadian Society of Petroleum Geologists and Alberta Research Council, 1994).

  • Terzaghi, K. Theoretical Soil Mechanics 11–15 (Wiley, 1943).

  • Cadogan, S. P., Maitland, G. C. & Trusler, J. M. Diffusion coefficients of CO2 and N2 in water at temperatures between 298.15 K and 423.15 K at pressures up to 45 MPa. J. Chem. Eng. Data 59, 519–525 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sherwood Lollar, B., Weise, S., Frape, S. & Barker, J. Isotopic constraints on the migration of hydrocarbon and helium gases of southwestern Ontario. Bull. Can. Petrol. Geol. 42, 283–295 (1994).


    Google Scholar
     

  • Sherwood Lollar, B. et al. Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface. Chem. Geol. 226, 328–339 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Telling, J. et al. Bioenergetic constraints on microbial hydrogen utilisation in Precambrian deep crustal fracture fluids. Geomicrobiol. J. 35, 108–119 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Onstott, T. C. et al. The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand Basin, South Africa. Geomicrobiol. J. 23, 369–414 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Heard, A. W. et al. South African crustal fracture fluids preserve paleometeoric water signatures for up to tens of millions of years. Chem. Geol. 493, 379–395 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ward, J. et al. Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: implications for the deep biosphere. Geochim. Cosmochim. Acta 68, 3239–3250 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link