June 4, 2023
Quantum-enabled millimetre wave to optical transduction using neutral atoms – Nature

Quantum-enabled millimetre wave to optical transduction using neutral atoms – Nature

  • Raimond, J. M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Suleymanzade, A. et al. A tunable high-q millimeter wave cavity for hybrid circuit and cavity qed experiments. Appl. Phys. Lett. 116, 104001 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lauk, N. et al. Perspectives on quantum transduction. Quantum Sci. Technol. 5, 020501 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. Measuring the scrambling of quantum information. Phys. Rev. A 94, 040302 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Diamanti, E., Lo, H.-K., Qi, B. & Yuan, Z. Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025 (2016).

    Article 

    Google Scholar
     

  • Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Svensson, K. et al. Figures of merit for quantum transducers. Quantum Sci. Technol. 5, 034009 (2020).

    Article 

    Google Scholar
     

  • McKenna, T. P. et al. Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-onsapphire transducer. Optica 7, 1737–1745 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Y. et al. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12, 4453 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahu, R. et al. Quantum-enabled operation of a microwave-optical interface. Nat. Commun. 13, 1276 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Brubaker, B. M. et al. Optomechanical ground-state cooling in a continuous and efficient electro-optic transducer. Phys. Rev. X 12, 021062 (2022).

    CAS 

    Google Scholar
     

  • Delaney, R. D. et al. Superconducting-qubit readout via low-backaction electro-optic transduction. Nature 606, 489–493 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nat. Phys. 16, 69–74 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Barends, R. et al. Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits. Appl. Phys. Lett. 99, 113507 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Covey, J. P., Sipahigil, A. & Saffman, M. Microwave-to-optical conversion via four-wave mixing in a cold ytterbium ensemble. Phys. Rev. A 100, 012307 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Petrosyan, D., Mølmer, K., Fortágh, J. & Saffman, M. Microwave to optical conversion with atoms on a superconducting chip. New J. Phys. 21, 073033 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hafezi, M. et al. Atomic interface between microwave and optical photons. Phys. Rev. A 85, 020302 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Vogt, T. et al. Efficient microwave-to-optical conversion using Rydberg atoms. Phys. Rev. A 99, 023832 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tu, H.-T. et al. High-efficiency coherent microwave-tooptics conversion via off-resonant scattering. Nat. Photon. 16, 291–296 (2022).

  • Hermann-Avigliano, C. et al. Long coherence times for Rydberg qubits on a superconducting atom chip. Phys. Rev. A 90, 040502 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Mohapatra, A. K., Jackson, T. R. & Adams, C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ningyuan, J. et al. Observation and characterization of cavity Rydberg polaritons. Phys. Rev. A 93, 041802 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Jia, N. et al. A strongly interacting polaritonic quantum dot. Nat. Phys. 14, 550–554 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Georgakopoulos, A., Sommer, A. & Simon, J. Theory of interacting cavity Rydberg polaritons. Quantum Sci. Technol. 4, 014005 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Leroux, I. D., Schleier-Smith, M. H. & Vuletíc, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Anferov, A., Suleymanzade, A., Oriani, A., Simon, J. & Schuster, D. I. Millimeter-wave four-wave mixing via kinetic inductance for quantum devices. Phys. Rev. Appl. 13, 024056 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pechal, M. & Safavi-Naeini, A. H. Millimeter-wave interconnects for microwave-frequency quantum machines. Phys. Rev. A 96, 042305 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Dixit, A. V. et al. Searching for dark matter with a superconducting qubit. Phys. Rev. Lett. 126, 141302 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khabiboulline, E. T., Borregaard, J., De Greve, K. & Lukin, M. D. Optical interferometry with quantum networks. Phys. Rev. Lett. 123, 070504 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Groszkowski, P., Koppenhöfer, M., Lau, H.-K. & Clerk, A. A. Reservoir-engineered spin squeezing: macroscopic even-odd effects and hybrid-systems implementations. Phys. Rev. X 12, 011015 (2022).

    CAS 

    Google Scholar
     

  • Cohen, L. Z., Kim, I. H., Bartlett, S. D. & Brown, B. J. Low-overhead fault-tolerant quantum computing using long-range connectivity. Sci. Adv. 8, eabn1717 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Welte, S., Hacker, B., Daiss, S., Ritter, S. & Rempe, G. Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. 8, 011018 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Meissner, W. & Ochsenfeld, R. A new effect when superconductivity occurs. Science 21, 787–788 (1933).


    Google Scholar
     

  • Tanji-Suzuki, H. et al. Interaction between atomic ensembles and optical resonators: Classical description. In Advances In Atomic, Molecular, and Optical Physics (eds Arimondo, E. et al.) Vol. 60, 201–237 (Academic Press, 2011).

  • Sibalic, N., Pritchard, J., Adams, C. & Weatherill, K. ARC: an open-source library for calculating properties of alkali Rydberg atoms. Comput. Phys. Commun. 220, 319–331 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Source link