September 7, 2024
SMYD5 methylation of rpL40 links ribosomal output to gastric cancer – Nature

SMYD5 methylation of rpL40 links ribosomal output to gastric cancer – Nature

  • Robichaud, N., Sonenberg, N., Ruggero, D. & Schneider, R. J. Translational control in cancer. Cold Spring Harb. Perspect. Biol. 11, a032896 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovalski, J. R., Kuzuoglu-Ozturk, D. & Ruggero, D. Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO J. 41, e109823 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, R. T. & Board, P. G. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucleic Acids Res. 19, 1035–1040 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgan, E. et al. The current and future incidence and mortality of gastric cancer in 185 countries, 2020-40: a population-based modelling study. eClinicalMedicine 47, 101404 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirata, Y., Noorani, A., Song, S., Wang, L. & Ajani, J. A. Early stage gastric adenocarcinoma: clinical and molecular landscapes. Nat. Rev. Clin. Oncol. 20, 453–469 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Manzanedo, I., Pereira, F., Perez-Viejo, E. & Serrano, A. Gastric cancer with peritoneal metastases: current status and prospects for treatment. Cancers 15, 1777 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhat, K. P., Umit Kaniskan, H., Jin, J. & Gozani, O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat. Rev. Drug. Discov. 20, 265–286 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, X. et al. Comprehensive analysis of histone modification-associated genes on differential gene expression and prognosis in gastric cancer. Exp. Ther. Med. 18, 2219–2230 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Unique SMYD5 structure revealed by AlphaFold correlates with its functional divergence. Biomolecules 12, 783 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters. Nat. Commun. 13, 3190 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stender, J. D. et al. Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol. Cell 48, 28–38 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Husmann, D. & Gozani, O. Histone lysine methyltransferases in biology and disease. Nat. Struct. Mol. Biol. 26, 880–889 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afjehi-Sadat, L. & Garcia, B. A. Comprehending dynamic protein methylation with mass spectrometry. Curr. Opin. Chem. Biol. 17, 12–19 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williamson, N. A., Raliegh, J., Morrice, N. A. & Wettenhall, R. E. Post-translational processing of rat ribosomal proteins. Ubiquitous methylation of Lys22 within the zinc-finger motif of RL40 (carboxy-terminal extension protein 52) and tissue-specific methylation of Lys4 in RL29. Eur. J. Biochem. 246, 786–793 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eastham, M. J., Pelava, A., Wells, G. R., Watkins, N. J. & Schneider, C. RPS27a and RPL40, which are produced as ubiquitin fusion proteins, are not essential for p53 signalling. Biomolecules 13, 898 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Z. et al. Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide. Mol. Cell 67, 71–83.e7 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guimaraes, J. C. & Zavolan, M. Patterns of ribosomal protein expression specify normal and malignant human cells. Genome Biol. 17, 236 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferretti, M. B. & Karbstein, K. Does functional specialization of ribosomes really exist? RNA 25, 521–538 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, S. C., MacDonald, C. C., Kellogg, M. K., Karamysheva, Z. N. & Karamyshev, A. L. Specialized ribosomes in health and disease. Int. J. Mol. Sci. 24, 6334 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panda, A. et al. Tissue- and development-stage-specific mRNA and heterogeneous CNV signatures of human ribosomal proteins in normal and cancer samples. Nucleic Acids Res. 48, 7079–7098 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, A. S., Burdeinick-Kerr, R. & Whelan, S. P. A ribosome-specialized translation initiation pathway is required for cap-dependent translation of vesicular stomatitis virus mRNAs. Proc. Natl Acad. Sci. USA 110, 324–329 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandin, V. et al. Polysome fractionation and analysis of mammalian translatomes on a genome-wide scale. J. Vis. Exp. 87, 51455 (2014).


    Google Scholar
     

  • Liu, S. et al. METTL13 methylation of eEF1A increases translational output to promote tumorigenesis. Cell 176, 491–504.e421 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, E. K., Clavarino, G., Ceppi, M. & Pierre, P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat. Methods 6, 275–277 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwasaki, S. & Ingolia, N. T. The growing toolbox for protein synthesis studies. Trends Biochem. Sci. 42, 612–624 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen, P. J. & McConkey, E. H. Evidence for control of protein synthesis in HeLa cells via the elongation rate. J. Cell. Physiol. 104, 269–281 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oertlin, C. et al. Generally applicable transcriptome-wide analysis of translation using anota2seq. Nucleic Acids Res. 47, e70 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oertlin, C., Watt, K., Ristau, J. & Larsson, O. Anota2seq analysis for transcriptome-wide atudies of mRNA translation. Methods Mol. Biol. 2418, 243–268 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Truitt, M. L. & Ruggero, D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer 16, 288–304 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, H. J., Zhuang, L. & Fitzgerald, R. C. Current advances in understanding the molecular profile of hereditary diffuse gastric cancer and its clinical implications. J. Exp. Clin. Cancer Res. 42, 57 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregory, S. N. & Davis, J. L. CDH1 and hereditary diffuse gastric cancer: a narrative review. Chin. Clin. Oncol. 12, 25 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Pihlak, R., Fong, C. & Starling, N. Targeted therapies and developing precision medicine in gastric cancer. Cancers 15, 3248 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidlitz, T. et al. Mouse models of human gastric cancer subtypes with stomach-specific CreERT2-mediated pathway alterations. Gastroenterology 157, 1599–1614.e2 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, H. H. & Chu, P. Immunohistochemical features of the gastrointestinal tract tumors. J. Gastrointest. Oncol. 3, 262–284 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L. et al. Paracrine activation of MET promotes peritoneal carcinomatosis in scirrhous gastric cancer. Cancer Sci. 104, 1640–1646 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staudt, R. E., Carlson, R. D. & Snook, A. E. Targeting gastrointestinal cancers with chimeric antigen receptor (CAR)-T cell therapy. Cancer Biol. Ther. 23, 127–133 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadelain, M., Riviere, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, C. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat. Med. 28, 1189–1198 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, J. et al. Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer. J. Hematol. Oncol. 12, 18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jana, S. et al. Transcriptional–translational conflict is a barrier to cellular transformation and cancer progression. Cancer Cell 41, 853–870.e13 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sfakianos, A. P., Raven, R. M. & Willis, A. E. The pleiotropic roles of eIF5A in cellular life and its therapeutic potential in cancer. Biochem. Soc. Trans. 50, 1885–1895 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, S. G. Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem. Sci. 38, 243–252 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mealey-Farr, R. et al. Antibody toolkit to investigate eEF1A methylation dynamics in mRNA translation elongation. J. Biol. Chem. 299, 104747 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simsek, D. & Barna, M. An emerging role for the ribosome as a nexus for post-translational modifications. Curr. Opin. Cell Biol. 45, 92–101 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, X., Ju, H. & Yang, W. An ego network analysis approach identified important biomarkers with an association to progression and metastasis of gastric cancer. J. Cell. Biochem. 120, 15963–15970 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reynoird, N. et al. Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes Dev. 30, 772–785 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Aller, G. S. et al. Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7, 340–343 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edmunds, J. W., Mahadevan, L. C. & Clayton, A. L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 27, 406–420 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schotta, G. et al. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev. 22, 2048–2061 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagans, S. et al. The cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 7, 234–244 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luger, K., Rechsteiner, T. J. & Richmond, T. J. in Chromatin Protocols. Methods in Molecular Biology, vol. 119 (ed. Becker P. B.) 1–16 (1999).

  • Zoabi, M. et al. Methyltransferase-like 21 C (METTL21C) methylates alanine tRNA synthetase at Lys-943 in muscle tissue. J. Biol. Chem. 295, 11822–11832 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baymaz, H. I., Spruijt, C. G. & Vermeulen, M. in Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods Mol. Biol., vol. 1188 (ed. Warscheid, B.) 207–226 (2014).

  • Wingfield P. Protein precipitation using ammonium sulfate. Curr. Protoc. Protein. Sci. Appendix 3:Appendix-3F (2001).

  • Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner (Lawrence Berkeley National Lab, 2014).

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pruitt, K. D. et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 42, D756–D763 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods—a Bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mootha, V. K. et al. PGC-α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).

  • Guan, B.-J. et al. A unique ISR program determines cellular responses to chronic stress. Mol. Cell 68, 885–900.e6 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mansour, F. H. & Pestov, D. G. Separation of long RNA by agarose–formaldehyde gel electrophoresis. Anal. Biochem. 441, 18–20 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahman, S. & Zenklusen, D. in Imaging Gene Expresson. Methods in Molecular Biology, vol. 1042 (ed. Shav-Tal, Y.) 33–46 (Humana Press, 2013).

  • Scott, D. D. et al. Nol12 is a multifunctional RNA binding protein at the nexus of RNA and DNA metabolism. Nucleic Acids Res. 45, 12509–12528 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  • The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Mazur, P. K. et al. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510, 283–287 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boussadia, O., Kutsch, S., Hierholzer, A., Delmas, V. & Kemler, R. E-cadherin is a survival factor for the lactating mouse mammary gland. Mech. Dev. 115, 53–62 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lesche, R. et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32, 148–149 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, X. et al. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc. Natl Acad. Sci. USA 105, 6656–6661 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raymond, C. S. & Soriano, P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link