September 18, 2024
Sophisticated natural products as antibiotics – Nature

Sophisticated natural products as antibiotics – Nature

  • Lewis, K. The science of antibiotic discovery. Cell 181, 29–45 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    PubMed 

    Google Scholar
     

  • Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).


    Google Scholar
     

  • Ramos-Castaneda, J. A. et al. Mortality due to KPC carbapenemase-producing Klebsiella pneumoniae infections: systematic review and meta-analysis: mortality due to KPC Klebsiella pneumoniae infections. J. Infect. 76, 438–448 (2018).

    PubMed 

    Google Scholar
     

  • Xu, L., Sun, X. & Ma, X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann. Clin. Microbiol. Antimicrob. 16, 18 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zgurskaya, H. I., Rybenkov, V. V., Krishnamoorthy, G. & Leus, I. V. Trans-envelope multidrug efflux pumps of Gram-negative bacteria and their synergism with the outer membrane barrier. Res. Microbiol. 169, 351–356 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staley, J. T. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • D’Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. 17, 254–264 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenn, K. et al. Quinones are growth factors for the human gut microbiota. Microbiome 5, 161 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015). This paper describes the discovery of teixobactin from an uncultured bacterium.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shukla, R. et al. An antibiotic from an uncultured bacterium binds to an immutable target. Cell 186, 4059–4073.e4027 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Pantel, L. et al. Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol. Cell 70, 83–94 e87 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imai, Y. et al. Evybactin is a DNA gyrase inhibitor that selectively kills Mycobacterium tuberculosis. Nat. Chem. Biol. 18, 1236–1244 (2022). This paper describes the discovery of darobactins that target BamA in the outer membrane of Gram-negative bacteria.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, R. D. et al. Computational identification of a systemic antibiotic for gram-negative bacteria. Nat. Microbiol. 7, 1661–1672 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahsavari, N. et al. A silent operon of Photorhabdus luminescens encodes a prodrug mimic of GTP. mBio 13, e0070022 (2022).

    PubMed 

    Google Scholar
     

  • Libis, V. et al. Multiplexed mobilization and expression of biosynthetic gene clusters. Nat. Commun. 13, 5256 (2022). This paper describes an approach for efficient cloning of environmental DNA for the expression of BGCs.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022). This study catalogues BGCs from sequenced genomes and links them to taxonomy and biogeography.

    CAS 
    PubMed 

    Google Scholar
     

  • O’Shea, R. & Moser, H. E. Physicochemical properties of antibacterial compounds: Implications for drug discovery. J. Med. Chem. 51, 2871–2878 (2008).

    PubMed 

    Google Scholar
     

  • Richter, M. F. et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017). This study provides rules for compound penetration into Gram-negative bacteria.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehla, J. et al. Predictive rules of efflux inhibition and avoidance in Pseudomonas aeruginosa. mBio 12, e02785–20 (2021). This study analyses physico-chemical properties of compounds that enable penetration into P. aeruginosa, and synthesis of MDR inhibitors.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, S. et al. Defining new chemical space for drug penetration into Gram-negative bacteria. Nat. Chem. Biol. 16, 1293–1302 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mansbach, R. A. et al. Machine learning algorithm identifies an antibiotic vocabulary for permeating Gram-negative bacteria. J. Chem. Inf. Model. 60, 2838–2847 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geddes, E. J. et al. Porin-independent accumulation in Pseudomonas enables antibiotic discovery. Nature 624, 145–153 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, E. N. et al. Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens. Nat. Microbiol. 5, 67–75 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Durand-Reville, T. F. et al. Rational design of a new antibiotic class for drug-resistant infections. Nature 597, 698–702 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Srinivas, N. et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327, 1010–1013 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Luther, A. et al. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576, 452–458 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pahil, K. S. et al. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature 625, 572–577 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zampaloni, C. et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 625, 566–571 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 10, 226 (1929).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Mora-Ochomogo, M. & Lohans, C. T. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med. Chem. 12, 1623–1639 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silver, L. L. Multi-targeting by monotherapeutic antibacterials. Nat. Rev. Drug Discov. 6, 41–55 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Reading, C. & Cole, M. Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11, 852–857 (1977).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levasseur, P. et al. Efficacy of a ceftazidime–avibactam combination in a murine model of septicemia caused by Enterobacteriaceae species producing ampc or extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 58, 6490–6495 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wunderink, R. G. et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: The TANGO II randomized clinical trial. Infect. Dis. Ther. 7, 439–455 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, K. & Ausubel, F. M. Prospects for plant-derived antibacterials. Nat. Biotechnol. 24, 1504–1507 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Stermitz, F. R., Lorenz, P., Tawara, J. N., Zenewicz, L. A. & Lewis, K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl Acad. Sci. USA 97, 1433–1437 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moniruzzaman, M. et al. Analysis of orthogonal efflux and permeation properties of compounds leads to the discovery of new efflux pump inhibitors. ACS Infect. Dis. 8, 2149–2160 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R. & Blaser, M. J. Role of the microbiome in human development. Gut 68, 1108–1114 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Schnizlein, M. K. & Young, V. B. Capturing the environment of the Clostridioides difficile infection cycle. Nat. Rev. Gastroenterol. Hepatol. 19, 508–520 (2022).

    PubMed 

    Google Scholar
     

  • Anthony, W. E. et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep. 39, 110649 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022). This paper describes the introduction of a new type of ‘drug’—an assemblage of clostridial spores for the treatment of C. difficile infection.

    CAS 
    PubMed 

    Google Scholar
     

  • Lopetuso, L. R., Scaldaferri, F., Petito, V. & Gasbarrini, A. Commensal clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 5, 23 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikusova, K., Slayden, R. A., Besra, G. S. & Brennan, P. J. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother. 39, 2484–2489 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chahine, E. B., Karaoui, L. R. & Mansour, H. Bedaquiline: a novel diarylquinoline for multidrug-resistant tuberculosis. Ann. Pharmacother. 48, 107–115 (2014).

    PubMed 

    Google Scholar
     

  • Diallo, D. et al. Antituberculosis therapy and gut microbiota: review of potential host microbiota directed-therapies. Front. Cell. Infect. Microbiol. 11, 673100 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quigley, J. et al. Novel antimicrobials from uncultured bacteria acting against Mycobacterium tuberculosis. mBio 11, e01516–e01520 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motiwala, T., Mthethwa, Q., Achilonu, I. & Khoza, T. ESKAPE pathogens: looking at Clp ATPases as potential drug targets. Antibiotics 11, 1218 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rempel, S. et al. A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds. Nature 580, 409–412 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leimer, N. et al. A selective antibiotic for Lyme disease. Cell 184, 5405–5418.e5416 (2021). This paper describes the identification of an antibiotic for selective action against B. burgdorferi.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polikanov, Y. S., Melnikov, S. V., Soll, D. & Steitz, T. A. Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat. Struct. Mol. Biol. 22, 342–344 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee, A. N. & Perkins, H. R. Compounds formed between nucleotides related to the biosynthesis of bacterial cell wall and vancomycin. Biochem. Biophys. Res. Commun. 24, 489–494 (1966).

    CAS 
    PubMed 

    Google Scholar
     

  • Munch, D. & Sahl, H. G. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria – Impact on binding and efficacy of antimicrobial peptides. Biochim. Biophys. Acta 1848, 3062–3071 (2015).

    PubMed 

    Google Scholar
     

  • Leclercq, R., Derlot, E., Duval, J. & Courvalin, P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med. 319, 157–161 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Marshall, C. G., Broadhead, G., Leskiw, B. K. & Wright, G. D. d-Ala–d-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc. Natl Acad. Sci. USA 94, 6480–6483 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shukla, R. et al. Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Nature 608, 390–396 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shukla, R. et al. An antibiotic from an uncultured bacterium binds to an immutable target. Cell 186, 4059–4073 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Homma, T. et al. Dual targeting of cell wall precursors by teixobactin leads to cell lysis. Antimicrob. Agents Chemother. 60, 6510–6517 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schatz, A., Bugie, E. & Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc. Soc. Exp. Biol. Med. 55, 66–69 (1944).

    CAS 

    Google Scholar
     

  • Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Aguirre Rivera, J. et al. Real-time measurements of aminoglycoside effects on protein synthesis in live cells. Proc. Natl Acad. Sci. USA 118, e2013315118 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersson, D. I., Bohman, K., Isaksson, L. A. & Kurland, C. G. Translation rates and misreading characteristics of rpsD mutants in Escherichia coli. Mol. Genetics Genomics 187, 467–472 (1982).

    CAS 

    Google Scholar
     

  • Wohlgemuth, I. et al. Translation error clusters induced by aminoglycoside antibiotics. Nat. Commun. 12, 1830 (2021). This study reveals the basis of killing by aminoglycosides—the introduction of strings of errors into nascent proteins.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Kling, A. et al. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 348, 1106–1112 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, K. (ed.) Persister Cells and Infectious Disease (Springer Nature, 2019).

  • Dorr, T., Vulic, M. & Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berghoff, B. A., Hoekzema, M., Aulbach, L. & Wagner, E. G. Two regulatory RNA elements affect TisB-dependent depolarization and persister formation. Mol. Microbiol. 103, 1020–1033 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Romilly, C., Deindl, S. & Wagner, E. G. H. The ribosomal protein S1-dependent standby site in tisB mRNA consists of a single-stranded region and a 5′ structure element. Proc. Natl Acad. Sci. USA 116, 15901–15906 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schumacher, M. A. et al. HipBA–promoter structures reveal the basis of heritable multidrug tolerance. Nature 524, 59–64 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manuse, S. et al. Bacterial persisters are a stochastically formed subpopulation of low-energy cells. PLoS Biol. 19, e3001194 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quigley, J. & Lewis, K. Noise in a metabolic pathway leads to persister formation in Mycobacterium tuberculosis. Microbiol. Spectr. 10, e0294822 (2022).

    PubMed 

    Google Scholar
     

  • Fleck, L. E. et al. A screen for and validation of prodrug antimicrobials. Antimicrob. Agents Chemother. 58, 1410–1419 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodreid, J. D. et al. Total synthesis and antibacterial testing of the A54556 cyclic acyldepsipeptides isolated from Streptomyces hawaiiensis. J. Nat. Prod. 77, 2170–2181 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Thomy, D. et al. The ADEP biosynthetic gene cluster in Streptomyces hawaiiensis NRRL 15010 reveals an accessory clpP gene as a novel antibiotic resistance factor. Appl. Environ. Microbiol. 85, e01292–19 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brotz-Oesterhelt, H. et al. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat. Med. 11, 1082–1087 (2005). This paper describes the discovery of the mechanism of killing by ADEP: dysregulation of the bacterial protease ClpP.

    PubMed 

    Google Scholar
     

  • Olivares, A. O., Nager, A. R., Iosefson, O., Sauer, R. T. & Baker, T. A. Mechanochemical basis of protein degradation by a double-ring AAA+ machine. Nat. Struct. Mol. Biol. 21, 871–875 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vahidi, S. et al. Reversible inhibition of the ClpP protease via an N-terminal conformational switch. Proc. Natl Acad. Sci. USA 115, E6447–E6456 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffith, E. C. et al. Ureadepsipeptides as ClpP Activators. ACS Infect. Dis. 5, 1915–1925 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malik, I. T. et al. Functional characterisation of ClpP mutations conferring resistance to acyldepsipeptide antibiotics in firmicutes. ChemBioChem 21, 1997–2012 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gatsogiannis, C., Balogh, D., Merino, F., Sieber, S. A. & Raunser, S. Cryo-EM structure of the ClpXP protein degradation machinery. Nat. Struct. Mol. Biol. 26, 946–954 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ripstein, Z. A., Vahidi, S., Houry, W. A., Rubinstein, J. L. & Kay, L. E. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. eLife 9, e52158 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fei, X. et al. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. eLife 9, e52774 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sass, P. et al. Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc. Natl Acad. Sci. USA 108, 17474–17479 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silber, N., Mayer, C., Matos de Opitz, C. L. & Sass, P. Progression of the late-stage divisome is unaffected by the depletion of the cytoplasmic FtsZ pool. Commun. Biol. 4, 270 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conlon, B. P. et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503, 365–370 (2013). This paper describes the anti-persister activity of ADEP.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mroue, N. et al. Pharmacodynamics of ClpP-activating antibiotic combinations against Gram-positive pathogens. Antimicrob. Agents Chemother. 64, e01554-19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown Gandt, A. et al. In vivo and in vitro effects of a ClpP-activating antibiotic against vancomycin-resistant enterococci. Antimicrob. Agents Chemother. 62, e00424-18 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brotz-Oesterhelt, H. & Vorbach, A. Reprogramming of the caseinolytic protease by ADEP antibiotics: molecular mechanism, cellular consequences, therapeutic potential. Front. Mol. Biosci. 8, 690902 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frees, D., Gerth, U. & Ingmer, H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int. J. Med. Microbiol. 304, 142–149 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Illigmann, A., Thoma, Y., Pan, S., Reinhardt, L. & Brotz-Oesterhelt, H. Contribution of the Clp protease to bacterial survival and mitochondrial homoeostasis. Microb. Physiol. 31, 260–279 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Schuster, M. et al. Peptidomimetic antibiotics disrupt the lipopolysaccharide transport bridge of drug-resistant Enterobacteriaceae. Sci. Adv. 9, eadg3683 (2023).

  • Nguyen, H. et al. Characterization of a radical SAM oxygenase for the ether crosslinking in darobactin biosynthesis. J. Am. Chem. Soc. 144, 18876–18886 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur, H. et al. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 593, 125–129 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Groß, S. et al. Improved broad-spectrum antibiotics against Gram-negative pathogens via darobactin biosynthetic pathway engineering. Chem. Sci. 12, 11882–11893 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seyfert, C. E. et al. Darobactins exhibiting superior antibiotic activity by Cryo-EM structure guided biosynthetic engineering. Angew. Chem. Int. Ed. Engl. 62, e202214094 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Y. C. et al. Atroposelective total synthesis of darobactin A. J. Am. Chem. Soc. 144, 14458–14462 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nesic, M. et al. Total synthesis of darobactin A. J. Am. Chem. Soc. 144, 14026–14030 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Tan, Y. S., Lane, D. P. & Verma, C. S. Stapled peptide design: principles and roles of computation. Drug Discov. Today 21, 1642–1653 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Maeda, K., Osato, T. & Umezawa, H. A new antibiotic, azomycin. J. Antibiot. 6, 182 (1953).

    CAS 

    Google Scholar
     

  • Nakamura, S. Structure of azomycin, a new antibiotic. Pharm. Bull. 3, 379–383 (1955).

    CAS 
    PubMed 

    Google Scholar
     

  • Shoji, J. H. et al. Isolation of azomycin from Pseudomonas fluorescens. J. Antibiot. 42, 1513–1514 (1989).

    CAS 

    Google Scholar
     

  • Gupta, R. et al. Functionalized nitroimidazole scaffold construction and their pharmaceutical applications: a 1950–2021 comprehensive overview. Pharmaceuticals 15, 561 (2022).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldstein, B. P. et al. The mechanism of action of nitro-heterocyclic antimicrobial drugs. Metabolic activation by micro-organisms. J. Gen. Microbiol. 100, 283–298 (1977).

    CAS 
    PubMed 

    Google Scholar
     

  • Miller, M. J. & Liu, R. Design and syntheses of new antibiotics inspired by nature’s quest for iron in an oxidative climate. Acc. Chem. Res. 54, 1646–1661 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, T. & Yamawaki, K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin. Infect. Dis. 69, S538–S543 (2019). This paper describes the creation of an approved chimeric antibiotic utilizing a siderophore moiety for penetration into the cell.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broder, S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res. 85, 1–18 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. Y., Tsolis, R. M. & Baumler, A. J. The microbiome and gut homeostasis. Science 377, eabp9960 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Cook, M. A. & Wright, G. D. The past, present, and future of antibiotics. Sci. Transl. Med. 14, eabo7793 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Smith, P. A. et al. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 561, 189–194 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link