September 7, 2024
Spin state and deep interior structure of Mars from InSight radio tracking – Nature

Spin state and deep interior structure of Mars from InSight radio tracking – Nature

  • Banerdt, W. B. et al. Initial results from the InSight mission on Mars. Nat. Geosci. 13, 183–189 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Folkner, W. M. et al. The rotation and interior structure experiment on the InSight mission to Mars. Space Sci. Rev. 214, 100 (2018).

    ADS 

    Google Scholar
     

  • Dehant, V. & Mathews, P. M. Precession, Nutation and Wobble of the Earth (Cambridge Univ. Press, 2015).

  • Sasao, T., Okubo, S. & Saito, M. A simple theory on dynamical effects of stratified fluid core upon nutational motion of the Earth. Proc. IAU Symp. 78, 165–183 (1980).

    ADS 

    Google Scholar
     

  • Folkner, W. M. et al. Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science 278, 1749–1752 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoder, C. F. & Standish, E. M. Martian precession and rotation from Viking lander range data. J. Geophys. Res. 102, 4065–4080 (1997).

    ADS 

    Google Scholar
     

  • Evans, S. et al. MONTE: the next generation of mission design and navigation software. CEAS Space J. 10, 79–86 (2018).

    ADS 

    Google Scholar
     

  • Marty, J. C. et al. GINS: the CNES/GRGS GNSS scientific software. 3rd Int. Coll. Sci. Fundam. Asp. Galileo Program. ESA Proc. WPP326 31, 8–10 (2011).


    Google Scholar
     

  • Le Maistre, S. et al. Lander radio science experiment with a direct link between Mars and the Earth. Planet. Space Sci. 68, 105–122 (2012).

    ADS 

    Google Scholar
     

  • Konopliv, A. S. et al. Detection of the Chandler wobble of Mars from orbiting spacecraft. Geophys. Res. Lett. 47, e2020GL090568 (2020).

    ADS 

    Google Scholar
     

  • Baland, R.-M. et al. The precession and nutations of a rigid Mars. Celest. Mech. Dyn. Astron. 132, 47 (2020).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Banfield, D. et al. InSight Auxiliary Payload Sensor Suite (APSS). Space Sci. Rev. 215, 4 (2019).

    ADS 

    Google Scholar
     

  • Sanloup, C. et al. Density measurements of liquid Fe–S alloys at high-pressure. Geophys. Res. Lett. 27, 811–814 (1999).

    ADS 

    Google Scholar
     

  • Yoshizaki, T. & McDonough, W. F. The composition of Mars. Geochim. Cosmochim. Acta 273, 137–162 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Smrekar, S. E. et al. Pre-mission InSights on the interior of Mars. Space Sci. Rev. 215, 3 (2019).

    ADS 

    Google Scholar
     

  • Yoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E. M. & Folkner, W. M. Fluid core size of Mars from detection of the solar tide. Science 300, 299–303 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stähler, S. C. et al. Seismic detection of the martian core. Science 373, 443–448 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Rivoldini, A., Van Hoolst, T., Verhoeven, O., Mocquet, A. & Dehant, V Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Khan, A. et al. A geophysical perspective on the bulk composition of Mars. J. Geophys. Res. 123, 575–611 (2018).

    CAS 

    Google Scholar
     

  • Wieczorek, M. A., Beuthe, M., Rivoldini, A. & Van Hoolst, T. Hydrostatic interfaces in bodies with nonhydrostatic lithospheres. J. Geophys. Res. Planets 124, 1410–1432 (2019).

    ADS 

    Google Scholar
     

  • Kiefer, W. S., Bills, B. G. & Nerem, R. S. An inversion of gravity and topography for mantle and crustal structure on Mars. J. Geophys. Res. Planets 101, 9239–9252 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Defraigne, P., Dehant, V. & Van Hoolst, T. Steady-state convection in Mars’ mantle. Planet. Space Sci. 49, 501–509 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Samuel, H. et al. The thermo-chemical evolution of Mars with a strongly stratified mantle. J. Geophys. Res. Planets 126, e2020JE006613 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • McNamara, A. K. A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics 760, 199–220 (2019).

    ADS 

    Google Scholar
     

  • Steenstra, E. S. & van Westrenen, W. A synthesis of geochemical constraints on the inventory of light elements in the core of Mars. Icarus 315, 69–78 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Gendre, H., Badro, J., Wehr, N. & Borensztajn, S. Martian core composition from experimental high-pressure metal-silicate phase equilibria. Geochem. Perspect. Lett. 21, 42–46 (2022).


    Google Scholar
     

  • Shibazaki, Y. et al. Hydrogen partitioning between iron and ringwoodite: implications for water transport into the Martian core. Earth Planet. Sci. Lett. 287, 463–470 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Zharkov, V. N. The internal structure of Mars: a key to understanding the origin of terrestrial planets. Sol. Syst. Res. 30, 456–465 (1996).

    ADS 

    Google Scholar
     

  • Tsuno, K., Frost, D. J. & Rubie, D. C. The effects of nickel and sulphur on the core–mantle partitioning of oxygen in Earth and Mars. Phys. Earth Planet. Inter. 185, 1–12 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Defraigne, P., Rivoldini, A., Van Hoolst, T. & Dehant, V. Mars nutation resonance due to free inner core nutation. J. Geophys. Res. Planets 108, 5128 (2003).

    ADS 

    Google Scholar
     

  • Mittelholz, A. et al. Timing of the martian dynamo: new constraints for a core field 4.5 and 3.7 Ga ago. Sci. Adv. 6, eaba0513 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lodders, K. Relative atomic Solar System abundances, mass fractions, and atomic masses of the elements and their isotopes, composition of the solar photosphere, and compositions of the major chondritic meteorite groups. Space Sci. Rev. 217, 44 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Estefan, J. A. & Sovers, O. J. A Comparative Survey of Current and Proposed Tropospheric Refraction-Delay Models for DSN Radio Metric Data Calibration. JPL Publication 94-24 (NASA 1994).

  • Le Maistre, S. Martian lander radio science data calibration for Mars troposphere. Radio Sci. 55, e2020RS007155 (2020).

    ADS 

    Google Scholar
     

  • Buccino, D., Border, J. S., Folkner, W. M., Kahan, K. & Le Maistre, S. Low-SNR Doppler data processing for the InSight radio science experiment. Remote Sens. 14, 1924 (2022).

    ADS 

    Google Scholar
     

  • Le Maistre, S., Rosenblatt, P., Dehant, V., Marty, J.-C. & Yseboodt, M. Mars rotation determination from a moving rover using Doppler tracking data: what could be done? Planet. Space Sci. 159, 17–27 (2018).

    ADS 

    Google Scholar
     

  • Folkner, W. M., Williams, J. G., Boggs, D. H., Park, R. S. & Kuchynka, P. The planetary and lunar ephemerides DE430 and DE431. IPN Progr. Rep. 42, 196 (2014).


    Google Scholar
     

  • Jacobson, R. A. & Lainey, V. Martian satellite orbits and ephemerides. Planet. Space Sci. 102, 35–44 (2014).

    ADS 

    Google Scholar
     

  • Dehant, V., Defraigne, P. & Van Hoolst, T. Computation of Mars’ transfer functions for nutations, tides and surface loading. Phys. Earth Planet. Inter. 117, 385–395 (2000).

    ADS 

    Google Scholar
     

  • Van Hoolst, T., Dehant, V., Roosbeek, F. & Lognonné, P. Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161, 281–296 (2003).

    ADS 

    Google Scholar
     

  • Archinal, B. A. et al. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015. Celest. Mech. Dyn. Astron. 130, 22 (2018).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Konopliv, A. S., Yoder, C. F., Standish, E. M., Yuan, D.-N. & Sjogren, W. L. A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006).

    ADS 

    Google Scholar
     

  • Dehant, V. et al. The radioscience LaRa instrument onboard ExoMars 2020 to investigate the rotation and interior of Mars. Planet. Space Sci. 180, 104776 (2020).


    Google Scholar
     

  • Kahan, D. S. et al. Mars precession rate determined from radiometric tracking of the InSight lander. Planet. Space Sci. 199, 105208 (2021).


    Google Scholar
     

  • Baland, R.-M., Hees, A., Yseboodt, M., Bourgoin, A. & Le Maistre, S. Relativistic contributions to the rotation of Mars. Astron. Astrophys. 670, A29 (2023).


    Google Scholar
     

  • Lange, L. et al. InSight pressure data recalibration, and its application to the study of long-term pressure changes on Mars. J. Geophys. Res. Planets 127, e2022JE007190 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Torre Juarez, M., Piqueux, S., Kass, D. M., Newman, C. & Guzewich, S. D. Pressure deficit in Gale crater and a larger northern polar cap after the Mars year 34 global dust storm. AGU Fall Meeting Abstr. P51C-02 (2019).

  • Kuchynka, P. et al. New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 229, 340–347 (2014).

    ADS 

    Google Scholar
     

  • Panning, M. P. et al. Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. 211, 611–650 (2017).

    ADS 

    Google Scholar
     

  • Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – I. Physical properties. Geophys. J. Int. 162, 610–632 (2005).

    ADS 

    Google Scholar
     

  • Greenwood, S., Davies, C. J. & Pommier, A. Influence of thermal stratification on the structure and evolution of the Martian core. Geophys. Res. Lett. 48, e2021GL095198 (2021).

    ADS 

    Google Scholar
     

  • Terasaki, H. et al. Pressure and composition effects on sound velocity and density of core-forming liquids: implication to core compositions of terrestrial planets. J. Geophys. Res. Planets 124, 2272–2293 (2019).

    ADS 

    Google Scholar
     

  • Tsuno, K., Grewal, D. S. & Dasgupta, R. Core–mantle fractionation of carbon in Earth and Mars: the effects of sulfur. Geochim. Cosmochim. Acta 238, 477–495 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Okuchi, T. Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278, 1781–1784 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Clesi, V. et al. Low hydrogen contents in the cores of terrestrial planets. Sci. Adv. 4, e1701876 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malavergne, V. et al. Experimental constraints on the fate of H and C during planetary core–mantle differentiation. Implications for the Earth. Icarus 321, 473–485 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Yuan, L. & Steinle-Neumann, G. Strong sequestration of hydrogen into the Earth’s core during planetary differentiation. Geophys. Res. Lett. 47, e2020GL088303 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Anderson, D. L. & Minster, J. B. The frequency dependence of Q in the Earth and implications for mantle rheology and Chandler wobble. Geophys. J. R. Astron. Soc. 58, 431–440 (1979).

    ADS 

    Google Scholar
     

  • Yseboodt, M., Dehant, V. & Péters, M.-J. Signatures of the Martian rotation parameters in the Doppler and range observables. Planet. Space Sci. 144, 74–88 (2017).

    ADS 

    Google Scholar
     

  • Source link