June 7, 2023
Strain-retardant coherent perovskite phase stabilized Ni-rich cathode – Nature

Strain-retardant coherent perovskite phase stabilized Ni-rich cathode – Nature

  • Grey, C. P. & Hall, D. S. Prospects for lithium-ion batteries and beyond—a 2030 vision. Nat. Commun. 11, 6279 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).

    Article 

    Google Scholar
     

  • de Biasi, L. et al. Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-rich NCM and Li-rich HE-NCM cathode materials in Li-ion batteries. Adv. Mater. 31, e1900985 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, S. S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater. 24, 247–254 (2020).

    Article 

    Google Scholar
     

  • Mao, Y. et al. High‐voltage charging‐induced strain, heterogeneity, and micro‐cracks in secondary particles of a nickel‐rich layered cathode material. Adv. Funct. Mater. 29, 1900247 (2019).

    Article 

    Google Scholar
     

  • Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T. & Janek, J. There and back again – the journey of LiNiO2 as a cathode active material. Angew. Chem. Int. Ed. Engl. 58, 10434–10458 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heenan, T. M. M. et al. Identifying the origins of microstructural defects such as cracking within Ni‐rich NMC811 cathode particles for lithium‐ion batteries. Adv. Energy Mater. 10, 2002655 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohzuku, T., Ueda, A. & Yamamoto, N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bianchini, M. et al. The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nat. Mater. 19, 1088–1095 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, J. et al. Fictitious phase separation in Li layered oxides driven by electro-autocatalysis. Nat. Mater. 20, 991–999 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. & Lu, J. Cobalt in lithium-ion batteries. Science 367, 979–980 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, C., Reeves, P. J., Jacquet, Q. & Grey, C. P. Phase behavior during electrochemical cycling of Ni‐rich cathode materials for Li‐ion batteries. Adv. Energy Mater. 11, 2003404 (2020).

    Article 

    Google Scholar
     

  • Yoon, M. et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 6, 362–371 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marker, K., Xu, C. & Grey, C. P. Operando NMR of NMC811/graphite lithium-ion batteries: structure, dynamics, and lithium metal deposition. J. Am. Chem. Soc. 142, 17447–17456 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Structural distortion induced by manganese activation in a lithium-rich layered cathode. J. Am. Chem. Soc. 142, 14966–14973 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, T. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 6, 277–286 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cha, H. et al. Boosting reaction homogeneity in high-energy lithium-ion battery cathode materials. Adv. Mater. 32, e2003040 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Weigel, T. et al. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett. 4, 508–516 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xin, F. et al. What is the role of Nb in nickel-rich layered oxide cathodes for lithium-ion batteries? ACS Energy Lett. 6, 1377–1382 (2021).

  • Dixit, M., Markovsky, B., Aurbach, D. & Major, D. T. Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 Using first principles. J. Electrochem. Soc. 164, A6359–A6365 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yan, P. et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability ofl lithium-ion batteries. Nat. Energy 3, 600–605 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, X. et al. Radially oriented single‐crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium‐ion batteries. Adv. Energy Mater. 9, 1803963 (2019).

    Article 

    Google Scholar
     

  • Ryu, H.-H. et al. Microstrain alleviation in high-energy Ni-rich NCMA cathode for long battery life. ACS Energy Lett. 6, 216–223 (2020).

    Article 

    Google Scholar
     

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Langdon, J. & Manthiram, A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 37, 143–160 (2021).

    Article 

    Google Scholar
     

  • Li, J. et al. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J. Electrochem. Soc. 164, A1534–A1544 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Burley, J. C. et al. Magnetism and structural chemistry of the n = 1 Ruddlesden–Popper phase La4LiMnO8 and La3SrLiMnO8. J. Am. Chem. Soc. 124, 620–628 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, Y.-S. et al. Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping. Chem 6, 2759–2769 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hebert, A. & McCalla, E. The role of metal substitutions in the development of Li batteries, Part I: cathodes. Mater Adv 2, 3474–3518 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yoon, W.-S., Chung, K. Y., McBreen, J. & Yang, X.-Q. A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD. Electrochem. Commun. 8, 1257–1262 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Grenier, A. et al. Reaction heterogeneity in LiNi0.8Co0.15Al0.05O2 induced by surface layer. Chem. Mater. 29, 7345–7352 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lee, W., Lee, D., Kim, Y., Choi, W. & Yoon, W.-S. Enhancing the structural durability of Ni-rich layered materials by post-process: washing and heat-treatment. J. Mater. Chem. A 8, 10206–10216 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Williamson, G. K. & Hall, W. H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953).

    Article 
    CAS 

    Google Scholar
     

  • Muhammed Shafi, P. & Chandra Bose, A. Impact of crystalline defects and size on X-Ray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv. 5, 057137 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Uchimura, T. & Yamada, I. A robust thermal-energy-storage property associated with electronic phase transitions for quadruple perovskite oxides. Chem Commun (Camb) 56, 5500–5503 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hu, J. et al. Fundamental linkage between structure, electrochemical properties, and chemical compositions of LiNi1-x-yMnxCoyO2 cathode materials. ACS Appl. Mater. Interfaces 13, 2622–2629 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chae, M. S. et al. Vacancy‐driven high rate capabilities in calcium‐doped Na0.4MnO2 cathodes for aqueous sodium‐ion batteries. Adv. Energy Mater. 10, 2002077 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, W. et al. Advances in the cathode materials for lithium rechargeable batteries. Angew. Chem. Int. Ed. 59, 2578–2605 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 46, 544–549 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Wang, L. et al. Reaction inhomogeneity coupling with metal rearrangement triggers electrochemical degradation in lithium-rich layered cathode. Nat. Commun. 12, 5370 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juhás, P., Davis, T., Farrow, C. L. & Billinge, S. J. L. PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Cryst. 46, 560–566 (2013).

    Article 

    Google Scholar
     

  • Juhas, P., Farrow, C. L., Yang, X., Knox, K. R. & Billinge, S. J. Complex modeling: a strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure. Inverse Problems. Acta Cryst. 71, 562–568 (2015).


    Google Scholar
     

  • Source link