March 28, 2023
Suppressing quantum errors by scaling a surface code logical qubit – Nature

Suppressing quantum errors by scaling a surface code logical qubit – Nature

  • Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Gottesman, D. Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997).

  • Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

  • Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar
     

  • Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–475 (2001).

    MathSciNet 
    CAS 
    MATH 
    ADS 
    PubMed 

    Google Scholar
     

  • Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    MathSciNet 
    CAS 
    MATH 
    ADS 
    PubMed 

    Google Scholar
     

  • Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gidney, C. & Ekera, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).


    Google Scholar
     

  • Kivlichan, I. D. et al. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization. Quantum 4, 296 (2020).


    Google Scholar
     

  • Ballance, C., Harty, T., Linke, N., Sepiol, M. & Lucas, D. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. Nature 569, 532–536 (2019).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Rol, M. et al. Fast, high-fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic superconducting qubits. Phys. Rev. Lett. 123, 120502 (2019).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Jurcevic, P. et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Sci. Technol. 6, 025020 (2021).

  • Foxen, B. et al. Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms. Phys. Rev. Lett. 125, 120504 (2020).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Knill, E., Laflamme, R. & Zurek, W. H. Resilient quantum computation. Science 279, 342–345 (1998).

    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207–1282 (2008).

  • Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281–286 (2021).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Ryan-Anderson, C. et al. Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X 11, 041058 (2021).

    CAS 

    Google Scholar
     

  • Abobeih, M. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606, 884–889 (2022).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundaresan, N. et al. Matching and maximum likelihood decoding of a multi-round subsystem quantum error correction experiment. Preprint at https://arXiv.org/abs/2203.07205 (2022).

  • Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett. 129, 030501 (2022).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205–209 (2020).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    MathSciNet 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar
     

  • Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    ADS 

    Google Scholar
     

  • Satzinger, K. et al. Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Horsman, C., Fowler, A. G., Devitt, S. & Meter, R. V. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar
     

  • Fowler, A. G. & Gidney, C. Low overhead quantum computation using lattice surgery. Preprint at https://arXiv.org/abs/1808.06709 (2018).

  • Litinski, D. A game of surface codes: large-scale quantum computing with lattice surgery. Quantum 3, 128 (2019).


    Google Scholar
     

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS 

    Google Scholar
     

  • Neill, C. A Path towards Quantum Supremacy with Superconducting Qubits. PhD thesis, Univ. California Santa Barbara (2017).

  • Yan, F. et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Appl. 10, 054062 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • Chen, Z. et al. Exponential suppression of bit or phase errors with cyclic error correction. Nature 595, 383–387 (2021).


    Google Scholar
     

  • Kelly, J. et al. Scalable in situ qubit calibration during repetitive error detection. Phys. Rev. A 94, 032321 (2016).

    ADS 

    Google Scholar
     

  • Wen, X.-G. Quantum orders in an exact soluble model. Phys. Rev. Lett. 90, 016803 (2003).

    ADS 
    PubMed 

    Google Scholar
     

  • Bonilla Ataides, J. P., Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J. The XZZX surface code. Nat. Commun. 12, 2172 (2021).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aliferis, P. & Terhal, B. M. Fault-tolerant quantum computation for local leakage faults. Quantum Inf. Comput. 7, 139–156 (2007).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Suchara, M., Cross, A. W. & Gambetta, J. M. Leakage suppression in the toric code. Proc. 2015 IEEE International Symposium on Information Theory (ISIT) 1119–1123 (2015).

  • McEwen, M. et al. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun. 12, 1761 (2021).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spitz, S. T., Tarasinski, B., Beenakker, C. W. & O’Brien, T. E. Adaptive weight estimator for quantum error correction in a time-dependent environment. Adv. Quantum Technol. 1, 1800012 (2018).


    Google Scholar
     

  • Chen, E. H. et al. Calibrated decoders for experimental quantum error correction. Phys. Rev. Lett. 128, 110504 (2022).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Higgott, O., Bohdanowicz, T. C., Kubica, A., Flammia, S. T. & Campbell, E. T. Fragile boundaries of tailored surface codes and improved decoding of circuit-level noise. Preprint at https://arXiv.org/abs/2203.04948 (2022).

  • Criger, B. & Ashraf, I. Multi-path summation for decoding 2D topological codes. Quantum 2, 102 (2018).


    Google Scholar
     

  • Fowler, A. G., Whiteside, A. C. & Hollenberg, L. C. Towards practical classical processing for the surface code. Phys. Rev. Lett. 108, 180501 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • Bravyi, S., Suchara, M. & Vargo, A. Efficient algorithms for maximum likelihood decoding in the surface code. Phys. Rev. A 90, 032326 (2014).

    ADS 

    Google Scholar
     

  • Chubb, C. T. & Flammia, S. T. Statistical mechanical models for quantum codes with correlated noise. Ann. Inst. Henri Poincaré D 8, 269–321 (2021).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Pattison, C. A., Beverland, M. E., da Silva, M. P. & Delfosse, N. Improved quantum error correction using soft information. Preprint at https://arXiv.org/abs/2107.13589 (2021).

  • McEwen, M. et al. Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits. Nat. Phys. 18, 107–111 (2022).

    CAS 

    Google Scholar
     

  • Stephens, A. M. Fault-tolerant thresholds for quantum error correction with the surface code. Phys. Rev. A 89, 022321 (2014).

    ADS 

    Google Scholar
     

  • Emerson, J., Alicki, R. & Życzkowski, K. Scalable noise estimation with random unitary operators. J. Opt. B 7, S347 (2005).

    MathSciNet 
    ADS 

    Google Scholar
     

  • Source link