April 25, 2024
The evolution of fast-growing coral reef fishes – Nature

The evolution of fast-growing coral reef fishes – Nature

  • Wong, S., Bigman, J. S. & Dulvy, N. K. The metabolic pace of life histories across fishes. Proc. R. Soc. B 288, 20210910 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gómez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 1217–1224 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Charnov, E. L. & Berrigan, D. Evolution of life history parameters in animals with indeterminate growth, particularly fish. Evol. Ecol. 5, 63–68 (1991).

    Article 

    Google Scholar
     

  • Dmitriew, C. M. The evolution of growth trajectories: what limits growth rate? Biol. Rev. 86, 97–116 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. 92, 878–901 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).

    Article 

    Google Scholar
     

  • Ricklefs, R. E. & Wikelski, M. The physiology/life-history nexus. Trends Ecol. Evol. 17, 462–468 (2002).

    Article 

    Google Scholar
     

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar
     

  • Jennings, S., Greenstreet, S. P. R. & Reynolds, J. D. Structural change in an exploited fish community: a consequence of differential fishing effects on species with contrasting life histories. J. Anim. Ecol. 68, 617–627 (1999).

    Article 

    Google Scholar
     

  • Reynolds, J. D. In Macroecology (eds Blackburn, T. M. & Gaston, K. J.) 195–217 (Blackwell Publishing, 2003).

  • Thygesen, U. H., Farnsworth, K. D., Andersen, K. H. & Beyer, J. E. How optimal life history changes with the community size-spectrum. Proc. R. Soc. B 272, 1323–1331 (2005).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Arendt, J. D. Adaptive intrinsic growth rates: an integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).

    Article 

    Google Scholar
     

  • Heino, M. & Kaitala, V. Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. J. Evol. Biol. 12, 423–429 (1999).

    Article 

    Google Scholar
     

  • Caley, M. J. & Schwarzkopf, L. Complex growth rate evolution in a latitudinally widespread species. Evolution 58, 862–869 (2004).

    PubMed 

    Google Scholar
     

  • Lindgren, B. & Laurila, A. Proximate causes of adaptive growth rates: growth efficiency variation among latitudinal populations of Rana temporaria. J. Evol. Biol. 18, 820–828 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abrams, P. A., Leimar, O., Nylin, S. & Wiklund, C. The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. Am. Nat. 147, 381–395 (1996).

    Article 

    Google Scholar
     

  • Santodomingo, N., Wallace, C. C. & Johnson, K. G. Fossils reveal a high diversity of the staghorn coral genera Acropora and Isopora (Scleractinia: Acroporidae) in the Neogene of Indonesia. Zool. J. Linn. Soc. 175, 677–763 (2015).

    Article 

    Google Scholar
     

  • Siqueira, A. C., Morais, R. A., Bellwood, D. R. & Cowman, P. F. Trophic innovations fuel reef fish diversification. Nat. Commun. 11, 2669 (2020).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morais, R. A., Siqueira, A. C., Smallhorn-West, P. F. & Bellwood, D. R. Spatial subsidies drive sweet spots of tropical marine biomass production. PLoS Biol. 19, e3001435 (2021).

    Article 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Frýdlová, P. et al. Determinate growth is predominant and likely ancestral in squamate reptiles. Proc. R. Soc. B 287, 20202737 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bellwood, D. R. & Wainwright, P. C. In Coral Reef Fishes: Dynamics and Diversity on a Complex Ecosystem (ed. Sale, P. F.) 5–32 (Academic, 2002).

  • Depczynski, M. & Bellwood, D. R. Extremes, plasticity, and invariance in vertebrate life history traits: insights from coral reef fishes. Ecology 87, 3119–3127 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish Fish. 19, 874–889 (2018).

    Article 

    Google Scholar
     

  • Beukhof, E. et al. Marine fish traits follow fast-slow continuum across oceans. Sci. Rep. 9, 17878 (2019).

    Article 
    ADS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Denney, N. H., Jennings, S. & Reynolds, J. D. Life–history correlates of maximum population growth rates in marine fishes. Proc. R. Soc. Lond. B 269, 2229–2237 (2002).

    Article 

    Google Scholar
     

  • Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs 39, 1221–1231 (2020).

    Article 

    Google Scholar
     

  • Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Uyeda, J. C. & Harmon, L. J. A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Syst. Biol. 63, 902–918 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ghezelayagh, A. et al. Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. Nat. Ecol. Evol. 6, 1211–1220 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mitov, V., Bartoszek, K. & Stadler, T. Automatic generation of evolutionary hypotheses using mixed Gaussian phylogenetic models. Proc. Natl Acad. Sci USA 116, 16921–16926 (2019).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Cowman, P. F. & Bellwood, D. R. Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots. J. Evol. Biol. 24, 2543–2562 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bellwood, D. R., Goatley, C. H. R., Cowman, P. F., Bellwood, O. & Mora, C. In Ecology of Fishes on Coral Reefs (ed. Mora, C.) 55–63 (Cambridge Univ. Press, 2015).

  • Cowman, P. F., Bellwood, D. R. & van Herwerden, L. Dating the evolutionary origins of wrasse lineages (Labridae) and the rise of trophic novelty on coral reefs. Mol. Phylogenet. Evol. 52, 621–631 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bellwood, D. R., Hoey, A. S., Bellwood, O. & Goatley, C. H. R. Evolution of long-toothed fishes and the changing nature of fish-benthos interactions on coral reefs. Nat. Commun. 5, 3144 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindmark, M., Audzijonyte, A., Blanchard, J. L. & Gårdmark, A. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming. Glob. Change Biol. 28, 6239–6253 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Friedman, M. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc. R. Soc. B 277, 1675–1683 (2010).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Sibert, E. C. & Norris, R. D. New age of fishes initiated by the Cretaceous−Paleogene mass extinction. Proc. Natl Acad. Sci. USA 112, 8537–8542 (2015).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Patterson, C. An overview of the early fossil record of acanthomorphs. Bull. Mar. Sci. 52, 29–59 (1993).


    Google Scholar
     

  • Marramà, G., Giusberti, L. & Carnevale, G. A Rupelian coral reef fish assemblage from the Venetian Southern Alps (Berici Hills, NE Italy). Riv. Ital. Paleontol. S. 128, 469–513 (2022).


    Google Scholar
     

  • Marramà, G., Garbelli, C. & Carnevale, G. A clade-level morphospace for the Eocene fishes of Bolca: patterns and relationships with modern tropical shallow marine assemblages. B. Soc. Paleontol. Ital. 55, 139–156 (2016).


    Google Scholar
     

  • Coker, D. J., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish Biol. Fish. 24, 89–126 (2014).

    Article 

    Google Scholar
     

  • Mihaljević, M., Renema, W., Welsh, K. & Pandolfi, J. M. Eocene-Miocene shallow-water carbonate platforms and increased habitat diversity in Sarawak, Malaysia. Palaios 29, 378–391 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Renema, W. et al. Are coral reefs victims of their own past success? Sci. Adv. 2, e150085 (2016).

    Article 

    Google Scholar
     

  • Siqueira, A. C., Kiessling, W. & Bellwood, D. R. Fast-growing species shape the evolution of reef corals. Nat. Commun. 13, 2426 (2022).

    Article 
    ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Depczynski, M., Fulton, C. J., Marnane, M. J. & Bellwood, D. R. Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153, 111–120 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Brandl, S. J. et al. Response to Comment on “Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning”. Science 366, eaaz1301 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choat, J. H. Marine biology: ageing a ‘living fossil’. Curr. Biol. 31, R998–R1000 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiettekatte, N. M. D., Brandl, S. J. & Casey, J. M. fishualize: color palettes based on fish species. R package version 0.2.0 (2020).

  • von Bertalanffy, L. Problems of organic growth. Nature 163, 156–158 (1949).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Froese, R. & Pauly, D. FishBase. Version 04/2021 (2021); www.fishbase.org.

  • Pauly, D. Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy′s growth formula. Ber. Inst. Meeresk. Kiel 63, 1–156 (1979).


    Google Scholar
     

  • Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (ACM, 2016).

  • Mitchell, R. & Frank, E. Accelerating the XGBoost algorithm using GPU computing. PeerJ Comput. Sci. 3, e127 (2017).

    Article 

    Google Scholar
     

  • Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar
     

  • Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).

    Article 

    Google Scholar
     

  • Eastman, J. M., Harmon, L. J. & Tank, D. C. Congruification: support for time scaling large phylogenetic trees. Methods Ecol. Evol. 4, 688–691 (2013).

    Article 

    Google Scholar
     

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, S. A. & O’Meara, B. C. TreePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bannikov, A. F. Revision of some Eocene fishes from Bolca, Northern Italy, previously classified with the Apogonidae and Enoplosidae. Stud. Ric. Giacimenti Terziari Bolca 12, 65–76 (2008).


    Google Scholar
     

  • Cantalice, K. M., Alvarado-Ortega, J., Bellwood, D. R. & Siqueira, A. C. Rising from the ashes: the biogeographic origins of modern coral reef fishes. Bioscience 72, 769–777 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Mitov, V., Bartoszek, K., Asimomitis, G. & Stadler, T. Fast likelihood calculation for multivariate Gaussian phylogenetic models with shifts. Theor. Popul. Biol. 131, 66–78 (2020).

    Article 
    MATH 
    PubMed 

    Google Scholar
     

  • Siqueira, A. C., Yan, H. F., Morais, R. A. & Bellwood, D. R. Data from “The evolution of fast-growing coral reef fishes”. Zenodo https://doi.org/10.5281/zenodo.7797270 (2023).

  • Source link