August 13, 2022

The Higgs boson turns ten – Nature

  • ATLAS Collaboration et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). This article reports the discovery of the Higgs boson by the ATLAS Collaboration.

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • CMS Collaboration et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). This article reports the discovery of the Higgs boson by the CMS Collaboration.

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Quigg, C. & Shrock, R. Gedanken worlds without Higgs: QCD-induced electroweak symmetry breaking. Phys. Rev. D 79, 096002 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Englert, F. & Brout, R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964). Englert and Brout explain how gauge bosons can acquire a mass through their interaction with scalar fields.

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Higgs, P. W. Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964).

    ADS 
    Article 

    Google Scholar
     

  • Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964). Higgs explains how gauge bosons can acquire a mass through their interaction with scalar fields.

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Anderson, P. W. Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Guralnik, G. S., Hagen, C. R. & Kibble, T. W. B. Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kibble, T. W. B. Symmetry breaking in nonAbelian gauge theories. Phys. Rev. 155, 1554–1561 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Glashow, S. L. Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961).

    Article 

    Google Scholar
     

  • Salam, A. & Ward, J. C. Electromagnetic and weak interactions. Phys. Lett. 13, 168–171 (1964).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Weinberg, S. A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967).

    ADS 
    Article 

    Google Scholar
     

  • Yukawa, H. On the interaction of elementary particles I. Proc. Phys. Math. Soc. Jap. 17, 48–57 (1935).

    MATH 

    Google Scholar
     

  • Durr, S. et al. Ab-Initio determination of light hadron masses. Science 322, 1224–1227 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • ATLAS Collaboration. Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector. Phys. Lett. B 784, 173–191 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • CMS Collaboration et al. Observation of (tbar{t}) H production. Phys. Rev. Lett. 120, 231801 (2018).

  • ATLAS Collaboration et al. Measurements of WH and ZH production in the (Hto bbar{b}) decay channel in pp collisions at 13 TeV with the ATLAS detector. Eur. Phys. J. C 81, 178 (2021).

  • CMS Collaboration et al. Observation of Higgs boson decay to bottom quarks. Phys. Rev. Lett. 121, 121801 (2018).

    ADS 
    Article 

    Google Scholar
     

  • ATLAS Collaboration et al. Measurements of Higgs boson production cross-sections in the H→τ+τ− decay channel in pp collisions at s=13TeV with the ATLAS detector. Preprint at https://arxiv.org/abs/2201.08269 (2022).

  • CMS Collaboration et al. Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of τ leptons in pp collisions at s=13 TeV. Phys. Rev. Lett. 128, 081805 (2022).

    ADS 
    Article 

    Google Scholar
     

  • CMS Collaboration. CMS technical design report, volume II: physics performance. J. Phys. G 34, 995–1579 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • ATLAS Collaboration et al. Expected performance of the ATLAS experiment – detector, trigger and physics. Preprint at https://arxiv.org/abs/0901.0512 (2008).

  • Cacciari, M. & Salam, G. P. Pileup subtraction using jet areas. Phys. Lett. B 659, 119–126 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bertolini, D., Harris, P., Low, M. & Tran, N. Pileup per particle identification. J. High Energ. Phys. 10, 059 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Marzani, S., Soyez, G. and Spannowsky, M. Looking Inside Jets: An Introduction to Jet Substructure and Boosted-object Phenomenology Vol. 958 (Springer, 2019); https://doi.org/10.1007/978-3-030-15709-8

  • Guest, D., Cranmer, K. & Whiteson, D. Deep learning and its application to LHC physics. Ann. Rev. Nucl. Part. Sci. 68, 161–181 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gao, J., Harland-Lang, L. & Rojo, J. The structure of the proton in the LHC precision era. Phys. Rep. 742, 1–121 (2018).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Ball, R. D. et al. The PDF4LHC21 combination of global PDF fits for the LHC Run III. Preprint at https://arxiv.org/abs/2203.05506 (2022).

  • Anastasiou, C., Duhr, C., Dulat, F., Herzog, F. & Mistlberger, B. Higgs boson gluon-fusion production in QCD at three loops. Phys. Rev. Lett. 114, 212001 (2015). Calculation of Higgs boson production probability taking into account the highest number of quantum fluctuations possible today.

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Heinrich, G. Collider physics at the precision. Frontier, Phys. Rep. 922, 1–69 (2021).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • de Florian, D. et al. Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector. Preprint at https://arxiv.org/abs/1610.07922 (2016). This report summarizes the global theoretical knowledge of Higgs boson production and decay.

  • Buckley, A. et al. General-purpose event generators for LHC physics. Phys. Rep. 504, 145–233 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Campbell, J. M. et al. Event generators for high-energy physics experiments. Preprint at https://arxiv.org/abs/2203.11110 (2022).

  • Dainese, A. et al (eds) Report on the Physics at the HL-LHC, and Perspectives for the HE-LHC CERN Yellow Reports: Monographs Vol. 7/2019 (CERN, 2019); https://doi.org/10.23731/CYRM-2019-007

  • Abada, A. et al. FCC-ee: The Lepton Collider: future circular collider conceptual design report volume 2. Eur. Phys. J. ST 228, 261–623 (2019).

    Article 

    Google Scholar
     

  • Roloff, P., Franceschini, R., Schnoor, U. & Wulzer, A. The Compact Linear e+e Collider (CLIC): physics potential. Preprint at https://arxiv.org/abs/1812.07986 (2018).

  • Baer, H. et al. The International Linear Collider Technical Design Report – Volume 2: Physics. Preprint at https://arxiv.org/abs/1306.6352 (2013).

  • CEPC Study Group. CEPC Conceptual Design Report: Volume 2 – physics & detector. Preprint at https://arxiv.org/abs/1811.10545 (2018).

  • Bai, M. et al. C3: A “cool” route to the Higgs boson and beyond. Preprint at https://arxiv.org/abs/2110.15800 (2021).

  • 2020 Update of the European Strategy for Particle Physics (Brochure) Technical Report (CERN, 2020); https://doi.org/10.17181/CERN.JSC6.W89E

  • de Blas, J. et al. Higgs boson studies at future particle colliders. J. High Energ. Phys. 1, 139 (2020).

    ADS 
    Article 

    Google Scholar
     

  • ATLAS Collaboration. A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector. Phys. Lett. B 812, 135980 (2021).

    Article 
    CAS 

    Google Scholar
     

  • CMS Collaboration et al. Evidence for Higgs boson decay to a pair of muons. J. High Energ. Phys. 1, 148 (2021).

    ADS 

    Google Scholar
     

  • Bishara, F., Haisch, U., Monni, P. F. & Re, E. Constraining light-quark Yukawa couplings from Higgs distributions. Phys. Rev. Lett. 118, 121801 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Soreq, Y., Zhu, H. X. & Zupan, J. Light quark Yukawa couplings from Higgs kinematics. J. High Energ. Phys. 12, 045 (2016).

    ADS 
    Article 

    Google Scholar
     

  • André, K. D. J. et al. An experiment for electron-hadron scattering at the LHC. Eur. Phys. J. C 82, 40 (2022).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • ATLAS Collaboration. Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector. Preprint at https://arxiv.org/abs/2201.11428 (2022).

  • CMS Collaboration. Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at (sqrt{s}) = 13 TeV. Preprint at https://arxiv.org/abs/2205.05550 (2022).

  • d’Enterria, D., Poldaru, A. & Wojcik, G. Measuring the electron Yukawa coupling via resonant s-channel Higgs production at FCC-ee. Eur. Phys. J. Plus 137, 201 (2022).

    Article 

    Google Scholar
     

  • Delaunay, C., Ozeri, R., Perez, G. & Soreq, Y. Probing atomic Higgs-like forces at the precision frontier. Phys. Rev. D 96, 093001 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Flambaum, V. V., Geddes, A. J. & Viatkina, A. V. Isotope shift, nonlinearity of King plots, and the search for new particles. Phys. Rev. A 97, 032510 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • McCullough, M. An indirect model-dependent probe of the Higgs self-coupling. Phys. Rev. D 90, 015001 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Abada, A. et al. FCC-hh: the Hadron Collider: future circular collider conceptual design report volume 3. Eur. Phys. J. ST 228, 755–1107 (2019).

    Article 

    Google Scholar
     

  • CEPC Study Group. CEPC Conceptual Design Report: Volume 1 – accelerator. Preprint at https://arxiv.org/abs/1809.00285 (2018).

  • Franceschini, R. & Greco, M. Higgs and BSM physics at the future muon collider. Symmetry 13, 851 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Delahaye, J. P. et al. Muon colliders. Preprint at https://arxiv.org/abs/1901.06150 (2019).

  • Caola, F. & Melnikov, K. Constraining the Higgs boson width with ZZ production at the LHC. Phys. Rev. D 88, 054024 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Campbell, J. M., Ellis, R. K. & Williams, C. Bounding the Higgs width at the LHC using full analytic results for gg- > ee+μμ+. J. High Energy Phys. 4, 060 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • ATLAS Collaboration. Constraints on off-shell Higgs boson production and the Higgs boson total width in (ZZto 4ell ) and (ZZto 4ell ) final states with the ATLAS detector. Phys. Lett. B 786, 223–244 (2018).

  • CMS Collaboration. First evidence for off-shell production of the Higgs boson and measurement of its width. Preprint at https://arxiv.org/abs/2202.06923 (2022).

  • ATLAS Collaboration. Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at (sqrt{s}=13) TeV with the ATLAS detector. Phys. Lett. B 816, 136204 (2021).

  • CMS Collaboration et al. Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at (sqrt{s}=13) TeV. J. High Energy Phys. 12, 085 (2020).

  • Kaplan, D. B. & Georgi, H. SU(2) x U(1) breaking by vacuum misalignment. Phys. Lett. B 136, 183–186 (1984).

    ADS 
    Article 

    Google Scholar
     

  • Fayet, P. Supersymmetry and weak, electromagnetic and strong interactions. Phys. Lett. B 64, 159 (1976).

    ADS 
    Article 

    Google Scholar
     

  • Fayet, P. Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions. Phys. Lett. B 69, 489 (1977).

    ADS 
    Article 

    Google Scholar
     

  • Dimopoulos, S. & Georgi, H. Softly broken supersymmetry and SU(5). Nucl. Phys. B 193, 150–162 (1981).

    ADS 
    Article 

    Google Scholar
     

  • Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. R. The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998).

    ADS 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. R. New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 436, 257–263 (1998).

    ADS 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Randall, L. & Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Randall, L. & Sundrum, R. An Alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Graham, P. W., Kaplan, D. E. & Rajendran, S. Cosmological relaxation of the electroweak scale. Phys. Rev. Lett. 115, 221801 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Arkani-Hamed, N. et al. Solving the hierarchy problem at reheating with a large number of degrees of freedom. Phys. Rev. Lett. 117, 251801 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Giudice, G. F., McCullough, M. & You, T. Self-organised localisation. J. High Energ. Phys. 10, 093 (2021).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Arvanitaki, A., Dimopoulos, S., Gorbenko, V., Huang, J. & Van, K. Tilburg, A small weak scale from a small cosmological constant. J. High. Energy Phys. 05, 071 (2017).

    ADS 
    MATH 
    Article 

    Google Scholar
     

  • Arkani-Hamed, N., D’Agnolo, R. T. & Kim, H. D. Weak scale as a trigger. Phys. Rev. D 104, 095014 (2021).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Sakharov, A. D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967).

    CAS 

    Google Scholar
     

  • Cohen, A. G., Kaplan, D. B. & Nelson, A. E. Progress in electroweak baryogenesis. Ann. Rev. Nucl. Part. Sci. 43, 27–70 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Caprini, C. et al. Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions. J. Cosmol. Astropart. Phys. 04, 001 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Caprini, C. et al. Detecting gravitational waves from cosmological phase transitions with LISA: an update. J. Cosmol. Astropart. Phys. 03, 024 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Silveira, V. & Zee, A. Scalar Phantoms. Phys. Lett. B 161, 136–140 (1985).

    ADS 
    Article 

    Google Scholar
     

  • Burgess, C. P., Pospelov, M. & ter Veldhuis, T. The minimal model of nonbaryonic dark matter: a singlet scalar. Nucl. Phys. B 619, 709–728 (2001).

    ADS 
    Article 

    Google Scholar
     

  • McDonald, J. Gauge singlet scalars as cold dark matter. Phys. Rev. D 50, 3637–3649 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Patt, B. & Wilczek, F. Higgs-field portal into hidden sectors. Preprint at https://arxiv.org/abs/hep-ph/0605188 (2006).

  • Barr, S. M. & Zee, A. A new approach to the electron-muon mass ratio. Phys. Rev. D 15, 2652 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bjorken, J. D. & Weinberg, S. A mechanism for nonconservation of muon number. Phys. Rev. Lett. 38, 622 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Babu, K. S. & Nandi, S. Natural fermion mass hierarchy and new signals for the Higgs boson. Phys. Rev. D 62, 033002 (2000).

    ADS 
    Article 

    Google Scholar
     

  • de Gouvêa, A. Neutrino mass models. Ann. Rev. Nucl. Part. Sci. 66, 197–217 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Cabibbo, N., Maiani, L., Parisi, G. & Petronzio, R. Bounds on the fermions and Higgs boson masses in grand unified theories. Nucl. Phys. B 158, 295–305 (1979).

    ADS 
    Article 

    Google Scholar
     

  • Hung, P. Q. Vacuum instability and new constraints on fermion masses. Phys. Rev. Lett. 42, 873 (1979).

    ADS 
    Article 

    Google Scholar
     

  • Lindner, M. Implications of triviality for the Standard Model. Z. Phys. C 31, 295 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Degrassi, G. et al. Higgs mass and vacuum stability in the Standard Model at NNLO. J. High Energy Phys. 8, 098 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Buttazzo, D. et al. Investigating the near-criticality of the Higgs boson. J. High Energy Phys. 12, 089 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Bezrukov, F. L. & Shaposhnikov, M. The Standard Model Higgs boson as the inflaton. Phys. Lett. B 659, 703–706 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Particle Data Group et al. Review of particle physics. Prog. Theor. Exp. Phys. 2020, 083C01 (2020). This review summarizes all current knowledge of particle physics, both theoretical and experimental.

  • CMS Collaboration et al. Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton–proton collisions at (sqrt{s}=13) TeV. Eur. Phys. J. C 81, 488 (2021).

  • ATLAS Collaboration. A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery. Nature https://doi.org/10.1038/s41586-022-04893-w (2022). This article describes the current status of our knowledge of Higgs boson interactions, as measured by the ATLAS Collaboration.

  • CMS Collaboration. A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature https://doi.org/10.1038/s41586-022-04892-x (2022). This article describes the current status of our knowledge of Higgs boson interactions, as measured by the CMS Collaboration.

  • Source link