April 24, 2024

The rise of intelligent matter

  • 1.

    Sternberg, R. J. Handbook of Intelligence (Cambridge Univ. Press, 2000).

  • 2.

    Sternberg, R. J. Theories of intelligence. In APA Handbook of Giftedness and Talent (eds Pfeiffer, S. I. et al.) 145–161 (American Psychological Association, 2018).

  • 3.

    Legg, S. & Hutter, M. Universal intelligence: a definition of machine intelligence. Minds Mach. 17, 391–444 (2007).


    Google Scholar
     

  • 4.

    Amato, F. et al. Artificial neural networks in medical diagnosis. J. Appl. Biomed. 11, 47–58 (2013).

    CAS 

    Google Scholar
     

  • 5.

    Lane, N. D., Bhattacharya, S., Mathur, A., Forlivesi, C. & Kawsar, F. Squeezing deep learning into mobile and embedded devices. IEEE Pervasive Comput. 16, 82–88 (2017).


    Google Scholar
     

  • 6.

    Hecht, J. Lidar for self-driving cars. Opt. Photonics News 29, 26–33 (2018).

    ADS 

    Google Scholar
     

  • 7.

    Kanao, K. et al. Highly selective flexible tactile strain and temperature sensors against substrate bending for an artificial skin. RSC Adv. 5, 30170–30174 (2015).

    ADS 

    Google Scholar
     

  • 8.

    Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 9.

    Fernández-Caramés, T. M. & Fraga-Lamas, P. Towards the internet-of-smart-clothing: a review on IoT wearables and garments for creating intelligent connected E-textiles. Electronics 7, 405 (2018).


    Google Scholar
     

  • 10.

    Whitesides, G. M. Soft robotics. Angew. Chem. Int. Ed. 57, 4258–4273 (2018).

    CAS 

    Google Scholar
     

  • 11.

    Majidi, C. Soft robotics: a perspective—current trends and prospects for the future. Soft Robot. 1, 5–11 (2014).


    Google Scholar
     

  • 12.

    Hamdioui, S. et al. Applications of computation-in-memory architectures based on memristive devices. In Proc. 2019 Design, Automation and Test in Europe Conference and Exhibition 486–491, https://doi.org/10.23919/DATE.2019.8715020 (2019).

  • 13.

    Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).


    Google Scholar
     

  • 14.

    Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 15.

    Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 16.

    Isaacoff, B. P. & Brown, K. A. Progress in top-down control of bottom-up assembly. Nano Lett. 17, 6508–6510 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 17.

    McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Walther, A. Viewpoint: from responsive to adaptive and interactive materials and materials systems: a roadmap. Adv. Mater. 32, 1905111 (2020).

    CAS 

    Google Scholar
     

  • 19.

    Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Urban, M. W. Handbook of Stimuli-Responsive Materials (Wiley, 2011).

  • 21.

    He, X. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012). An intriguing example of an autonomous, homeostatic material system based on chemo-mechanical feedback loops.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 22.

    Anderson, C., Theraulaz, G. & Deneubourg, J. L. Self-assemblages in insect societies. Insectes Soc. 49, 99–110 (2002).


    Google Scholar
     

  • 23.

    Lopez, U., Gautrais, J., Couzin, I. D. & Theraulaz, G. From behavioural analyses to models of collective motion in fish schools. Interface Focus 2, 693–707 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Bajec, I. L. & Heppner, F. H. Organized flight in birds. Anim. Behav. 78, 777–789 (2009).


    Google Scholar
     

  • 25.

    Hinchey, M. G., Sterritt, R. & Rouff, C. Swarms and swarm intelligence. Computer 40, 111–113 (2007).


    Google Scholar
     

  • 26.

    Rubenstein, M., Cornejo, A. & Nagpal, R. Programmable self-assembly in a thousand-robot swarm. Science 345, 795–799 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 27.

    Yu, J., Wang, B., Du, X., Wang, Q. & Zhang, L. Ultra-extensible ribbon-like magnetic microswarm. Nat. Commun. 9, 3260 (2018). This article demonstrates how paramagnetic nanoparticles self-organize in a microswarm that can pass obstacles and how its locomotion can be controlled by applying oscillating magnetic fields.

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 28.

    Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 29.

    Yan, J., Bloom, M., Bae, S. C., Luijten, E. & Granick, S. Linking synchronization to self-assembly using magnetic Janus colloids. Nature 491, 578–581 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 30.

    Liang, X. et al. Hierarchical microswarms with leader–follower-like structures: electrohydrodynamic self-organization and multimode collective photoresponses. Adv. Funct. Mater. 30, 1908602 (2020).

    CAS 

    Google Scholar
     

  • 31.

    Mou, F. et al. Phototactic flocking of photochemical micromotors. iScience 19, 415–424 (2019). This study shows flocking behaviour of synthesized spherical microparticles, which can execute transporting tasks along predefined pathways or bypass obstacles.

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 32.

    Dai, B. et al. Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11, 1087–1092 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 33.

    Tagliazucchi, M., Weiss, E. A. & Szleifer, I. Dissipative self-assembly of particles interacting through time-oscillatory potentials. Proc. Natl Acad. Sci. USA 111, 9751–9756 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 34.

    Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 35.

    Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Monreal Santiago, G., Liu, K., Browne, W. R. & Otto, S. Emergence of light-driven protometabolism upon recruitment of a photocatalytic cofactor by a self-replicator. Nat. Chem. 12, 603–607 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 38.

    Zhu, B. et al. Skin-inspired haptic memory arrays with an electrically reconfigurable architecture. Adv. Mater. 28, 1559–1566 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Son, D. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 40.

    Miriyev, A., Stack, K. & Lipson, H. Soft material for soft actuators. Nat. Commun. 8, 596 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 41.

    Zhao, Z., Wang, C., Yan, H. & Liu, Y. Soft robotics programmed with double crosslinking DNA hydrogels. Adv. Funct. Mater. 29, 1905911 (2019). This article shows impressively how to translate nanometre-scale DNA self-assembly into macroscopic movements of soft materials, an encouraging achievement for soft robotics.

    CAS 

    Google Scholar
     

  • 42.

    Yang, H. et al. 3D printed photoresponsive devices based on shape memory composites. Adv. Mater. 29, 1701627 (2017).


    Google Scholar
     

  • 43.

    Lai, Y. C. et al. Actively perceiving and responsive soft robots enabled by self-powered, highly extensible, and highly sensitive triboelectric proximity- and pressure-sensing skins. Adv. Mater. 30, 1801114 (2018). This work presents soft robots driven by self-generated electricity via the triboelectric effect, which can sense and embrace close objects.


    Google Scholar
     

  • 44.

    Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 45.

    Liu, Y. et al. Stretchable motion memory devices based on mechanical hybrid materials. Adv. Mater. 29, 1701780 (2017).


    Google Scholar
     

  • 46.

    Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 47.

    Urban, M. W. et al. Key-and-lock commodity self-healing copolymers. Science 225, 220–225 (2018). A remarkable example for an advanced soft material with self-healing capabilities.

    ADS 

    Google Scholar
     

  • 48.

    Chen, Y., Kushner, A. M., Williams, G. A. & Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Li, C. H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Beyer, H. M. et al. Synthetic biology makes polymer materials count. Adv. Mater. 30, 1800472 (2018).


    Google Scholar
     

  • 51.

    Nakajima, K., Hauser, H., Li, T. & Pfeifer, R. Information processing via physical soft body. Sci. Rep. 5, 10487 (2015).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 52.

    Zhang, H., Zeng, H., Priimagi, A. & Ikkala, O. Programmable responsive hydrogels inspired by classical conditioning algorithm. Nat. Commun. 10, 3267 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 53.

    Zeng, H., Zhang, H., Ikkala, O. & Priimagi, A. Associative learning by classical conditioning in liquid crystal network actuators. Matter 2, 194–206 (2020). Associative learning is realized in a liquid crystal network material via a conditioning process, where an initially neutral light stimulus is asscociated with heating.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Kumar, B. V. V. S. P., Patil, A. J. & Mann, S. Enzyme-powered motility in buoyant organoclay/DNA protocells. Nat. Chem. 10, 1154–1163 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Garrad, M., Soter, G., Conn, A. T., Hauser, H. & Rossiter, J. A soft matter computer for soft robots. Sci. Robot. 4, eaaw6060 (2019). The authors propose a computational system integrated into a soft material, which, inspired by biological systems, tranfers information via a fluid perfusing through the system.

    PubMed 

    Google Scholar
     

  • 56.

    Miller, J. F. & Downing, K. Evolution in materio: looking beyond the silicon box. In Proc. NASA/DoD Conference on Evolvable Hardware 167–176, https://doi.org/10.1109/EH.2002.1029882 (2002).

  • 57.

    Feynman, R. P. The Character of Physical Law (MIT Press, 1967).

  • 58.

    Yoshihito, A. Information processing using intelligent materials – information-processing architectures for material processors. J. Intell. Mater. Syst. Struct. 5, 418–423 (1994).


    Google Scholar
     

  • 59.

    Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 60.

    Metz, C. Google built its very own chips to power its AI bots. Wired https://www.wired.com/2016/05/google-tpu-custom-chips/ (accessed 10 July 2020).

  • 61.

    Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 62.

    Sebastian, A. et al. Tutorial: brain-inspired computing using phase-change memory devices. J. Appl. Phys. 124, 111101 (2018).

    ADS 

    Google Scholar
     

  • 63.

    Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9, 2514 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 64.

    Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 65.

    Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

    ADS 

    Google Scholar
     

  • 66.

    Cheng, Z., Ríos, C., Pernice, W. H. P., David Wright, C. & Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 3, e1700160 (2017). This article shows an artificial synapse consisting of a photonic waveguide and a phase-change material, which paves the way for on-chip neuromorphic computing.

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 67.

    Gupta, A., Sakthivel, T. & Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015).

    CAS 

    Google Scholar
     

  • 68.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS 

    Google Scholar
     

  • 70.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    PubMed 
    ADS 

    Google Scholar
     

  • 71.

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 72.

    Wan, J. et al. Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 45, 6742–6765 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Zeng, M. et al. Bandgap tuning of two-dimensional materials by sphere diameter engineering. Nat. Mater. 19, 528–533 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 74.

    Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 75.

    Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).


    Google Scholar
     

  • 76.

    He, C. et al. Artificial synapse based on van der Waals heterostructures with tunable synaptic functions for neuromorphic computing. ACS Appl. Mater. Interfaces 12, 11945–11954 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Park, H., Mastro, M. A., Tadjer, M. J. & Kim, J. Programmable multilevel memtransistors based on van der Waals heterostructures. Adv. Electron. Mater. 5, 1900333 (2019).

    CAS 

    Google Scholar
     

  • 78.

    Liu, C. et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 13, 404–410 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 79.

    Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020). The presented image sensor based on a 2D material constitutes at the same time an artificial neural network.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 80.

    Bose, S. K. et al. Evolution of a designless nanoparticle network into reconfigurable Boolean logic. Nat. Nanotechnol. 10, 1048–1052 (2015). Computational functionality is experimentally realized in a disordered nanomaterial network consisting of arbitrarily interconnected, functionalized nanoparticles.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 81.

    Chen, T. et al. Classification with a disordered dopant-atom network in silicon. Nature 577, 341–345 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 82.

    Ruiz Euler, H.-C. et al. A deep-learning approach to realising functionality in nanoelectronic devices. Nat. Nanotechnol. 15, 992–998 (2020).

    PubMed 
    ADS 

    Google Scholar
     

  • 83.

    Ruiz Euler, H.-C. et al. Dopant network processing units: towards efficient neural-network emulators with high-capacity nanoelectronic nodes. Preprint at http://arxiv.org/abs/2007.12371 (2020).

  • 84.

    Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • 85.

    Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar
     

  • 86.

    Hirano, Y., Segawa, Y., Kuroda-Sowa, T., Kawai, T. & Matsumoto, T. Conductance with stochastic resonance in Mn12 redox network without tuning. Appl. Phys. Lett. 104, 233104 (2014).

    ADS 

    Google Scholar
     

  • 87.

    Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • 88.

    Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009).

    MATH 

    Google Scholar
     

  • 89.

    Jaeger, H. The “Echo State” Approach to Analysing and Training Recurrent Neural Networks. GMD Report 148 http://www.faculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRep.pdf (German National Research Institute for Computer Science, 2001).

  • 90.

    Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560 (2002).

    PubMed 
    MATH 

    Google Scholar
     

  • 91.

    Steil, J. J. Backpropagation-decorrelation: online recurrent learning with O(N) complexity. In IEEE Int. Conf. on Neural Networks 2, 843–848 (IEEE, 2004).

  • 92.

    Schürmann, F., Meier, K. & Schemmel, J. Edge of chaos computation in mixed-mode VLSI—a hard liquid. In Advances in Neural Information Processing Systems 17, 1201–1208 (2004).

  • 93.

    Schrauwen, B., D’Haene, M., Verstraeten, D. & Van Campenhout, J. Compact hardware liquid state machines on FPGA for real-time speech recognition. Neural Netw. 21, 511–523 (2008).

    PubMed 

    Google Scholar
     

  • 94.

    Fernando, C. & Sojakka, S. Pattern recognition in a bucket. In Proc. ECAL 588–597 (2003).

  • 95.

    Jones, B., Stekel, D., Rowe, J. & Fernando, C. Is there a liquid state machine in the bacterium Escherichia coli? In Proc. 2007 IEEE Symp. Artif. Life (CI-ALife 2007) 187–191, https://doi.org/10.1109/ALIFE.2007.367795 (2007).

  • 96.

    Dai, X. in Advances in Neural Networks Vol. 3174 (eds Yin, F. L. et al.) 519–524 (Springer, 2004).

  • 97.

    Goudarzi, A., Lakin, M. R. & Stefanovic, D. DNA reservoir computing: a novel molecular computing approach. In DNA Computing and Molecular Programming (eds Soloveichik D. & Yurke, B.) Vol. 8141, 76–89 (Springer, 2013).

  • 98.

    Nikolić, D., Haeusler, S., Singer, W. & Maass, W. Temporal dynamics of information content carried by neurons in the primary visual cortex. In Advances in Neural Information Processing Systems 1041–1048, https://doi.org/10.7551/mitpress/7503.003.0135 (2007).

  • 99.

    Duport, F., Smerieri, A., Akrout, A., Haelterman, M. & Massar, S. Fully analogue photonic reservoir computer. Sci. Rep. 6, 22381 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 100.

    Larger, L. et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt. Express 20, 3241 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 101.

    Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).

    PubMed 
    ADS 

    Google Scholar
     

  • 102.

    Larger, L. et al. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7, 011015 (2017).


    Google Scholar
     

  • 103.

    Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 104.

    Kulkarni, M. S. Memristor-based reservoir computing. In 2012 IEEE/ACM Int. Symp. on Nanoscale 226–232, https://doi.org/10.1145/2765491.2765531 (IEEE/ACM, 2012).

  • 105.

    Bürger, J. & Teuscher, C. Variation-tolerant computing with memristive reservoirs. In 2013 IEEE/ACM Int. Symp. on Nanoscale Architectures (NANOARCH) 1–6, https://doi.org/10.1109/NanoArch.2013.6623028 (IEEE/ACM, 2013).

  • 106.

    Merkel, C., Saleh, Q., Donahue, C. & Kudithipudi, D. Memristive reservoir computing architecture for epileptic seizure detection. Proc. Comput. Sci. 41, 249–254 (2014).


    Google Scholar
     

  • 107.

    Hassan, A. M., Li, H. H. & Chen, Y. Hardware implementation of echo state networks using memristor double crossbar arrays. In 2017 Int. Joint Conf. on Neural Networks (IJCNN) 2171–2177, https://doi.org/10.1109/IJCNN.2017.7966118 (IEEE, 2017).

  • 108.

    Soures, N., Hays, L. & Kudithipudi, D. Robustness of a memristor based liquid state machine. In 2017 Int. Joint Conf. on Neural Networks (IJCNN) 2414–2420, https://doi.org/10.1109/IJCNN.2017.7966149 (IEEE, 2017).

  • 109.

    Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 110.

    Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).


    Google Scholar
     

  • 111.

    Sillin, H. O. et al. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24, 384004 (2013).


    Google Scholar
     

  • 112.

    Demis, E. C. et al. Atomic switch networks—nanoarchitectonic design of a complex system for natural computing. Nanotechnology 26, 204003 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 113.

    Demis, E. C. et al. Nanoarchitectonic atomic switch networks for unconventional computing. Jpn. J. Appl. Phys. 55, 1102B2 (2016).


    Google Scholar
     

  • 114.

    Dale, M., Stepney, S., Miller, J. F. & Trefzer, M. Reservoir computing in materio: an evaluation of configuration through evolution. In 2016 IEEE Symp. Ser. Comput. Intell. SSCI 2016 https://doi.org/10.1109/SSCI.2016.7850170 (IEEE, 2016).

  • 115.

    Dale, M., Miller, J. F. & Stepney, S. Reservoir computing as a model for in-materio computing. In Advances in Unconventional Computing (ed. Adamatzky, A.) 533–571 (Springer, 2017).

  • 116.

    Tanaka, H. et al. A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate. Nat. Commun. 9, 2693 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 117.

    Appeltant, L., Van Der Sande, G., Danckaert, J. & Fischer, I. Constructing optimized binary masks for reservoir computing with delay systems. Sci. Rep. 4, 3629 (2015).


    Google Scholar
     

  • 118.

    Dale, M., Miller, J. F., Stepney, S. & Trefzer, M. A. Evolving Carbon nanotube reservoir computers. In Unconventional Computation and Natural Computation (eds Amos, M. & Condon, A.) 49–61 (Springer, 2016). This study demonstrates how physical media can be exploited as a reservoir for machine-learning capabilities.

  • 119.

    Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019).

    PubMed 

    Google Scholar
     

  • Source link