April 25, 2024

Transmembrane transport in inorganic colloidal cell-mimics – Nature

  • 1.

    Skou, J. C. & Esmann, M. The Na,K-ATPase. J. Bioenerg. Biomembr. 24, 249–261 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Shang, L. & Zhao, Y. Droplet-templated synthetic cells. Matter 4, 95–115 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Rodríguez-Arco, L., Li, M. & Mann, S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. Nat. Mater. 16, 857–863 (2017).

    Article 

    Google Scholar
     

  • 4.

    Rideau, E., Dimova, R., Schwille, P., Wurm, F. R. & Landfester, K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 47, 8572–8610 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Dinsmore, A. D. et al. Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298, 1006–1009 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Sugimoto, T., Khan, M. M. & Muramatsu, A. Preparation of monodisperse peanut-type α-Fe2O3 particles from condensed ferric hydroxide gel. Colloids Surf. A 70, 167–169 (1993).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Palacci, J. et al. Light-activated self-propelled colloids. Philos. Trans. R. Soc. A 372, 20130372 (2014).

    Article 

    Google Scholar
     

  • 8.

    Cheng, K. L., Sheng, Y. J. & Tsao, H. K. Brownian escape and force-driven transport through entropic barriers: particle size effect. J. Chem. Phys. 129, 184901 (2008).

    Article 

    Google Scholar
     

  • 9.

    Grigoriev, I. V., Makhnovskii, Y. A., Berezhkovskii, A. M. & Zitserman, V. Y. Kinetics of escape through a small hole. J. Chem. Phys. 116, 9574–9577 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024–1037 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Tweedy, L. et al. Seeing around corners: cells solve mazes and respond at a distance using attractant breakdown. Science 369, eaay9792 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Taylor, J. W., Eghtesadi, S. A., Points, L. J., Liu, T. & Cronin, L. Autonomous model protocell division driven by molecular replication. Nat. Commun. 8, 237 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Zhu, T. F., Adamala, K., Zhang, N. & Szostak, J. W. Photochemically driven redox chemistry induces protocell membrane pearling and division. Proc. Natl Acad. Sci. USA 109, 9828–9832 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Zhu, T. F. & Szostak, J. W. Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131, 5705–5713 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Yewdall, N. A., Mason, A. F. & van Hest, J. C. M. The hallmarks of living systems: towards creating artificial cells. Interface Focus 8, 20180023 (2018).

    Article 

    Google Scholar
     

  • 16.

    Yang, Z., Wei, J., Sobolev, Y. I. & Grzybowski, B. A. Systems of mechanized and reactive droplets powered by multi-responsive surfactants. Nature 553, 313–318 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Qiao, Y., Li, M., Booth, R. & Mann, S. Predatory behaviour in synthetic protocell communities. Nat. Chem. 9, 110–119 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Yin, Y. et al. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation. Nat. Commun. 7, 10658 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y. & Yomo, T. In vitro evolution of α-hemolysin using a liposome display. Proc. Natl Acad. Sci. USA 110, 16796–16801 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Li, G., Wang, L., Ni, H. & Pittman, C. U. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J. Inorg. Organomet. Polym. Mater. 11, 123–154 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    van der Wel, C. et al. Preparation of colloidal organosilica spheres through spontaneous emulsification. Langmuir 33, 8174–8180 (2017).

    Article 

    Google Scholar
     

  • 22.

    Okubo, M., Kobayashi, H., Huang, C., Miyanaga, E. & Suzuki, T. Water absorption behavior of polystyrene particles prepared by emulsion polymerization with nonionic emulsifiers and innovative easy synthesis of hollow particles. Langmuir 33, 3468–3475 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Shi, H., Huang, C., Liu, X. & Okubo, M. Role of osmotic pressure for the formation of sub-micrometer-sized, hollow polystyrene particles by heat treatment in aqueous dispersed systems. Langmuir 35, 12150–12157 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Kim, S. H., Park, J. G., Choi, T. M., Manoharan, V. N. & Weitz, D. A. Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules. Nat. Commun. 5, 3068 (2014).

    Article 

    Google Scholar
     

  • 25.

    Silletta, E. V., Xu, Z., Youssef, M., Sacanna, S. & Jerschow, A. Monitoring molecular transport across colloidal membranes. J. Phys. Chem. B 122, 4931–4936 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Datta, S. S. et al. Delayed buckling and guided folding of inhomogeneous capsules. Phys. Rev. Lett. 109, 134302 (2012).

    Article 

    Google Scholar
     

  • 27.

    Opdam, J., Tuinier, R., Hueckel, T., Snoeren, T. J. & Sacanna, S. Selective colloidal bonds via polymer-mediated interactions. Soft Matter 16, 7438–7446 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Kim, S. H., Shim, J. W., Lim, J. M., Lee, S. Y. & Yang, S. M. Microfluidic fabrication of microparticles with structural complexity using photocurable emulsion droplets. New J. Phys. 11, 075014 (2009).

    Article 

    Google Scholar
     

  • 29.

    Hyuk Im, S., Jeong, U. & Xia, Y. Polymer hollow particles with controllable holes in their surfaces. Nat. Mater. 4, 671–675 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Qiu, J. et al. Encapsulation of a phase-change material in nanocapsules with a well-defined hole in the wall for the controlled release of drugs. Angew. Chem. Int. Edn Engl. 58, 10606–10611 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Sacanna, S. et al. Shaping colloids for self-assembly. Nat. Commun. 4, 1688 (2013).

    Article 

    Google Scholar
     

  • 32.

    Kar, A., Chiang, T. Y., Ortiz Rivera, I., Sen, A. & Velegol, D. Enhanced transport into and out of dead-end pores. ACS Nano 9, 746–753 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Kuijk, A., van Blaaderen, A. & Imhof, A. Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J. Am. Chem. Soc. 133, 2346–2349 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Source link