April 24, 2024
Volcanic trigger of ocean deoxygenation during Cordilleran ice sheet retreat – Nature

Volcanic trigger of ocean deoxygenation during Cordilleran ice sheet retreat – Nature

  • Praetorius, S. K. et al. North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature 527, 362–366 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Crusius, J., Pedersen, T. F., Kienast, S., Keigwin, L. & Labeyrie, L. Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling-Ållerød interval (14.7–12.9 ka). Geology 32, 633–636 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Davies, M. H. et al. The deglacial transition on the southeastern Alaska Margin: meltwater input, sea level rise, marine productivity, and sedimentary anoxia. Paleoceanography 26, PA2223 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Walczak, M. H. et al. Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science 370, 716–720 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huybers, P. & Langmuir, C. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planet. Sci. Lett. 286, 479–491 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Praetorius, S. et al. Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation. Earth Planet. Sci. Lett. 452, 79–89 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hamme, R. C. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys. Res. Lett. 37, L19604 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Browning, T. J. et al. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys. Res. Lett. 41, 2014GL059364 (2014).

    Article 

    Google Scholar
     

  • Olgun, N. Surface ocean iron fertilization: the role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean. Glob. Biogeochem. Cycles 25, GB4001 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Levin, L. A. Manifestation, drivers, and emergence of open ocean deoxygenation. Annu. Rev. Mar. Sci. 10, 229–260 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Belanger, C. L., Sharon, Du, J., Payne, C. R. & Mix, A. C. North Pacific deep-sea ecosystem responses reflect post-glacial switch to pulsed export productivity, deoxygenation, and destratification. Deep Sea Res. Part I Oceanogr. Res. Pap. 164, 103341 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hendy, I. L. & Pedersen, T. F. Is pore water oxygen content decoupled from productivity on the California Margin? Trace element results from Ocean Drilling Program Hole 1017E, San Lucia slope, California. Paleoceanography 20, PA4026 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Lam, P. J. et al. Transient stratification as the cause of the North Pacific productivity spike during deglaciation. Nat. Geosci. 6, 622–626 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schmittner, A., Galbraith, E. D., Hostetler, S. W., Pedersen, T. F. & Zhang, R. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction. Paleoceanography 22, PA3207 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Du, J., Haley, B. A., Mix, A. C., Walczak, M. H. & Praetorius, S. K. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations. Nat. Geosci. 11, 749–755 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Davies-Walczak, M. et al. Late Glacial to Holocene radiocarbon constraints on North Pacific Intermediate Water ventilation and deglacial atmospheric CO2 sources. Earth Planet. Sci. Lett. 397, 57–66 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mix, A. C. et al. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 127–148 (American Geophysical Union, 1999).

  • Romero, O. E., LeVay, L. J., McClymont, E. L., Müller, J. & Cowan, E. A. Orbital and suborbital-scale variations of productivity and sea surface conditions in the Gulf of Alaska during the past 54,000 years: impact of iron fertilization by icebergs and meltwater. Paleoceanogr. Paleoclimatol. 37, e2021PA004385 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Velle, J. H. et al. High resolution inclination records from the Gulf of Alaska, IODP Expedition 341 Sites U1418 and U1419. Geophys. J. Int. 229, 345–358 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Morford, J. L. & Emerson, S. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63, 1735–1750 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sharon, Belanger, C., Du, J. & Mix, A. Reconstructing paleo-oxygenation for the last 54,000 years in the Gulf of Alaska using cross-validated benthic foraminiferal and geochemical records. Paleoceanogr. Paleoclimatol. 36, e2020PA003986 (2021).

    ADS 

    Google Scholar
     

  • Scudder, R. P. Geochemical approaches to the quantification of dispersed volcanic ash in marine sediment. Prog. Earth Planet. Sci. 3, 1 (2016).

    Article 

    Google Scholar
     

  • Roy, K. & Peltier, W. R. Relative sea level in the Western Mediterranean basin: a regional test of the ICE-7G_NA (VM7) model and a constraint on late Holocene Antarctic deglaciation. Quat. Sci. Rev. 183, 76–87 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lambeck, K., Purcell, A. & Zhao, S. The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses. Quat. Sci. Rev. 158, 172–210 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Seguinot, J., Rogozhina, I., Stroeven, A. P., Margold, M. & Kleman, J. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle. Cryosphere 10, 639–664 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Addison, J. A. et al. Productivity and sedimentary δ15N variability for the last 17,000 years along the northern Gulf of Alaska continental slope. Paleoceanography 27, PA1206 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Praetorius, S. K. et al. The role of Northeast Pacific meltwater events in deglacial climate change. Sci. Adv. 6, eaay2915 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weingartner, T. J., Danielson, S. L. & Royer, T. C. Freshwater variability and predictability in the Alaska Coastal Current. Deep Sea Res. Part II Top. Stud. Oceanogr. 52, 169–191 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Shugar, D. H. et al. Post-glacial sea-level change along the Pacific coast of North America. Quat. Sci. Rev. 97, 170–192 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ng, H. C. et al. Coherent deglacial changes in western Atlantic Ocean circulation. Nat. Commun. 9, 2947 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serno, S. et al. Eolian dust input to the Subarctic North Pacific. Earth Planet. Sci. Lett. 387, 252–263 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Du, J., Haley, B. A. & Mix, A. C. Neodymium isotopes in authigenic phases, bottom waters and detrital sediments in the Gulf of Alaska and their implications for paleo-circulation reconstruction. Geochim. Cosmochim. Acta 193, 14–35 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Farmer, G. L., Ayuso, R. & Plafker, G. A Coast Mountains provenance for the Valdez and Orca groups, southern Alaska, based on Nd, Sr, and Pb isotopic evidence. Earth Planet. Sci. Lett. 116, 9–21 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Preece, S. J., Westgate, J. A., Stemper, B. A. & Péwé, T. L. Tephrochronology of late Cenozoic loess at Fairbanks, central Alaska. GSA Bull. 111, 71–90 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, A. M. & Russell, J. K. Glacial pumping of a magma-charged lithosphere: a model for glaciovolcanic causality in magmatic arcs. Earth Planet. Sci. Lett. 548, 116500 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lesnek, A. J., Briner, J. P., Lindqvist, C., Baichtal, J. F. & Heaton, T. H. Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas. Sci. Adv. 4, eaar5040 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tulenko, J. P., Briner, J. P., Young, N. E. & Schaefer, J. M. The last deglaciation of Alaska and a new benchmark 10Be moraine chronology from the western Alaska Range. Quat. Sci. Rev. 287, 107549 (2022).

    Article 

    Google Scholar
     

  • Dalton, A. S. et al. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quat. Sci. Rev. 234, 106223 (2020).

    Article 

    Google Scholar
     

  • Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Muschitiello, F., Pausata, F. S. R., Lea, J. M., Mair, D. W. F. & Wohlfarth, B. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation. Nat. Commun. 8, 1020 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walczak, M. H. et al. A 17,000 yr paleomagnetic secular variation record from the southeast Alaskan margin: regional and global correlations. Earth Planet. Sci. Lett. 473, 177–189 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nishioka, J. et al. Subpolar marginal seas fuel the North Pacific through the intermediate water at the termination of the global ocean circulation. Proc. Natl Acad. Sci. 117, 12665–12673 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ciracì, E., Velicogna, I. & Swenson, S. Continuity of the mass loss of the world’s glaciers and ice caps from the GRACE and GRACE Follow-On Missions. Geophys. Res. Lett. 47, e2019GL086926 (2020).

    Article 
    ADS 

    Google Scholar
     

  • ETOPO1 1 arc-minute global relief model (National Geophysical Data Center, 2009); https://doi.org/10.7289/V5C8276M.

  • Boyer, T. P. et al. World Ocean Database 2018 (Technical ed. Mishonov, A. V.) NOAA Atlas NESDIS 87 (2018).

  • Global Volcanism Program, 2013. Volcanoes of the World, v. 4.8.7 (12 March 2020). Venzke, E. (ed.). Smithsonian Institution. https://doi.org/10.5479/si.GVP.VOTW4-2013 (2013).

  • Veres, D. et al. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Clim. Past 9, 1733–1748 (2013).

    Article 

    Google Scholar
     

  • Martin, J. H., Gordon, R. M., Fitzwater, S. & Broenkow, W. W. VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep Sea Res. Part A Oceanogr. Res. Pap. 36, 649–680 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lippiatt, S. M., Lohan, M. C. & Bruland, K. W. The distribution of reactive iron in northern Gulf of Alaska coastal waters. Mar. Chem. 121, 187–199 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Aguilar-Islas, A. M. et al. Temporal variability of reactive iron over the Gulf of Alaska shelf. Deep Sea Res. Part II Top. Stud. Oceanogr. 132, 90–106 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Crusius, J., Schroth, A. W., Resing, J. A., Cullen, J. & Campbell, R. W. Seasonal and spatial variabilities in northern Gulf of Alaska surface water iron concentrations driven by shelf sediment resuspension, glacial meltwater, a Yakutat eddy, and dust. Glob. Biogeochem. Cycles 31, 942–960 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Size-fractionated iron distribution on the northern Gulf of Alaska. Geophys. Res. Lett. 36, L11606 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Brown, M. T., Lippiatt, S. M., Lohan, M. C. & Bruland, K. W. Trace metal distributions within a Sitka eddy in the northern Gulf of Alaska. Limnol. Oceanogr. 57, 503–518 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lam, P. J. et al. Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron. Glob. Biogeochem. Cycles 20, GB1006 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Brown, M. T., Lippiatt, S. M. & Bruland, K. W. Dissolved aluminum, particulate aluminum, and silicic acid in northern Gulf of Alaska coastal waters: glacial/riverine inputs and extreme reactivity. Mar. Chem. 122, 160–175 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Crusius, J. Dissolved Fe supply to the central Gulf of Alaska is inferred to be derived from Alaskan glacial dust that is not resolved by dust transport models. J. Geophys. Res. Biogeosci. 126, e2021JG006323 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Duggen, S., Croot, P., Schach, U. & Hoffmann, L. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophys. Res. Lett. 34, L01612 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. Ser. C Appl. Stat. 57, 399–418 (2008).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Muratli, J. M., McManus, J., Mix, A. & Chase, Z. Dissolution of fluoride complexes following microwave-assisted hydrofluoric acid digestion of marine sediments. Talanta 89, 195–200 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crusius, J. & Thomson, J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments. Geochim. Cosmochim. Acta 64, 2233–2242 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Crusius, J., Calvert, S., Pedersen, T. & Sage, D. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett. 145, 65–78 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Serno, S. et al. Using the natural spatial pattern of marine productivity in the Subarctic North Pacific to evaluate paleoproductivity proxies. Paleoceanography 29, 2013PA002594 (2014).

    Article 

    Google Scholar
     

  • Lopes, C., Kucera, M. & Mix, A. C. Climate change decouples oceanic primary and export productivity and organic carbon burial. Proc. Natl Acad. Sci. 112, 332–335 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Payne, C. R. & Belanger, C. L. Enhanced carbonate dissolution associated with deglacial dysoxic events in the subpolar North Pacific. Paleoceanogr. Paleoclimatol. 36, e2020PA004206 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Rushdi, A. I., McManus, J. & Collier, R. W. Marine barite and celestite saturation in seawater. Mar. Chem. 69, 19–31 (2000).

    Article 
    CAS 

    Google Scholar
     

  • McManus, J. et al. Geochemistry of barium in marine sediments: implications for its use as a paleoproxy. Geochim. Cosmochim. Acta 62, 3453–3473 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dymond, J., Suess, E. & Lyle, M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography 7, 163–181 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Seidenkrantz, M.-S. Benthic foraminifera as palaeo sea-ice indicators in the subarctic realm – examples from the Labrador Sea–Baffin Bay region. Quat. Sci. Rev. 79, 135–144 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Fontanier, C. et al. Living (stained) deep-sea foraminifera off Hachinohe (NE Japan, Western Pacific): environmental interplay in oxygen-depleted ecosystems. J. Foraminifer. Res. 44, 281–299 (2014).

    Article 

    Google Scholar
     

  • Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article 

    Google Scholar
     

  • Josse, J. & Husson, F. missMDA: a package for handling missing values in multivariate data analysis. J. Stat. Softw. 70, 1–31 (2016).

    Article 

    Google Scholar
     

  • Cameron, C. E., Mulliken, K. M., Crass, S. W., Schaefer, J. R. & Wallace, K. L. Alaska Volcano Observatory geochemical database, version 2 (Alaska Division of Geological & Geophysical Surveys, 2019); https://doi.org/10.14509/30058

  • GEOROC Compilation: Intraplate Volcanic Rocks (DIGIS, 2022); https://doi.org/10.25625/RZZ9VM.

  • Templ, M., Filzmoser, P. & Reimann, C. Cluster analysis applied to regional geochemical data: problems and possibilities. Appl. Geochem. 23, 2198–2213 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Math. Geol. 35, 279–300 (2003).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Preece, S. J., Westgate, J. A., Froese, D. G., Pearce, N. J. G. & Perkins, W. T. A catalogue of late Cenozoic tephra beds in the Klondike goldfields and adjacent areas, Yukon Territory. Can. J. Earth Sci. 48, 1386–1418 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Westgate, J. A., Perkins, W. T., Fuge, R., Pearce, N. J. G. & Wintle, A. G. Trace-element analysis of volcanic glass shards by laser ablation inductively coupled plasma mass spectrometry: application to tephrochronological studies. Appl. Geochem. 9, 323–335 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wilcox, P. S. et al. A new set of basaltic tephras from Southeast Alaska represent key stratigraphic markers for the late Pleistocene. Quat. Res. 92, 246–256 (2019).

    Article 

    Google Scholar
     

  • Edwards, B. R. & Russell, J. K. Northern Cordilleran volcanic province: a northern Basin and Range? Geology 27, 243–246 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Huber, B., Bahlburg, H., Berndt, J., Dunkl, I. & Gerdes, A. Provenance of the Surveyor Fan and precursor sediments in the Gulf of Alaska—implications of a combined U-Pb, (U-Th)/He, Hf, and rare earth element study of detrital zircons. J. Geol. 126, 577–600 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dunn, C. A., Enkelmann, E., Ridgway, K. D. & Allen, W. K. Source to sink evaluation of sediment routing in the Gulf of Alaska and Southeast Alaska: a thermochronometric perspective. J. Geophys. Res. Earth Surf. 122, 711–734 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bootes, N., Enkelmann, E. & Lease, R. Late Miocene to Pleistocene source to sink record of exhumation and sediment routing in the Gulf of Alaska from detrital zircon fission-track and U-Pb double dating. Tectonics 38, 2703–2726 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Huber, B., Bahlburg, H. & Pfänder, J. A. Single grain heavy mineral provenance of garnet and amphibole in the Surveyor fan and precursor sediments on the Gulf of Alaska abyssal plain — implications for climate-tectonic interactions in the St. Elias orogen. Sediment. Geol. 372, 173–192 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Plafker, G., Moore, J. C. & Winkler, G. R. in The Geology of Alaska (eds Plafker, G. & Berg, H. C.) 389–448 (Geological Society of America, 1994).

  • Harris, N. R., Sisson, V. B., Wright, J. E. & Pavlis, T. L. Evidence for Eocene mafic underplating during fore-arc intrusive activity, eastern Chugach Mountains, Alaska. Geology 24, 263–266 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Sisson, V. B. et al. in Geology of a Transpressional Orogen Developed During Ridge-Trench Interaction Along the North Pacific Margin (eds. Sisson, V. B., Roeske, S. M. & Pavlis, T. L.) 293–326 (Geological Society of America, 2003).

  • Plafker, G., Nokleberg, W. J. & Lull, J. S. Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach Terranes along the Trans-Alaska Crustal Transect in the Chugach Mountains and Southern Copper River Basin, Alaska. J. Geophys. Res. Solid Earth 94, 4255–4295 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Polat, A. et al. Lithological, structural, and geochemical characteristics of the Mesoarchean Târtoq greenstone belt, southern West Greenland, and the Chugach – Prince William accretionary complex, southern Alaska: evidence for uniformitarian plate-tectonic processes. Can. J. Earth Sci. 53, 1336–1371 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lull, J. S., Plafker, G., Dover, J. H. & Galloway, J. P. Geochemistry and paleotectonic implications of metabasaltic rocks in the Valdez Group, southern Alaska. US Geol. Surv. Bull. 1946, 29–38 (1990).


    Google Scholar
     

  • Barker, F., Farmer, G. L., Ayuso, R. A., Plafker, G. & Lull, J. S. The 50 Ma granodiorite of the eastern Gulf of Alaska: melting in an accretionary prism in the forearc. J. Geophys. Res. Solid Earth 97, 6757–6778 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Bruand, E., Gasser, D., Bonnand, P. & Stuewe, K. The petrology and geochemistry of a metabasite belt along the southern margin of Alaska. Lithos 127, 282–297 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walinsky, S. E. et al. Distribution and composition of organic matter in surface sediments of coastal Southeast Alaska. Cont. Shelf Res. 29, 1565–1579 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Haskell, K. H. & Hanson, R. J. An algorithm for linear least squares problems with equality and nonnegativity constraints. Math. Program. 21, 98–118 (1981).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Bolton, M. S. M. et al. Machine learning classifiers for attributing tephra to source volcanoes: an evaluation of methods for Alaska tephras. J. Quat. Sci. 35, 81–92 (2020).

    Article 

    Google Scholar
     

  • Bryson, R. U., Bryson, R. A. & Ruter, A. A calibrated radiocarbon database of late Quaternary volcanic eruptions. eEarth Discuss. 1, 123–134 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Watt, S. F. L., Pyle, D. M. & Mather, T. A. The volcanic response to deglaciation: evidence from glaciated arcs and a reassessment of global eruption records. Earth Sci. Rev. 122, 77–102 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Crosweller, H. S. et al. Global database on large magnitude explosive volcanic eruptions (LaMEVE). J. Appl. Volcanol. 1, 4 (2012).

    Article 

    Google Scholar
     

  • Davies, L. J., Jensen, B. J. L., Froese, D. G. & Wallace, K. L. Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: key beds and chronologies over the past 30,000 years. Quat. Sci. Rev. 146, 28–53 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Lesnek, A. J., Briner, J. P., Baichtal, J. F. & Lyles, A. S. New constraints on the last deglaciation of the Cordilleran Ice Sheet in coastal Southeast Alaska. Quat. Res. 96, 140–160 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Haeussler, P. J. et al. Late Quaternary deglaciation of Prince William Sound, Alaska. Quat. Res. 105, 115–135 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Walcott, C. K., Briner, J. P., Baichtal, J. F., Lesnek, A. J. & Licciardi, J. M. Cosmogenic ages indicate no MIS 2 refugia in the Alexander Archipelago, Alaska. Geochronology 4, 191–211 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Briner, J. P. et al. The last deglaciation of Alaska. Cuad. Investig. Geogr. 43, 429–448 (2017).

    Article 

    Google Scholar
     

  • Tulenko, J. P., Briner, J. P., Young, N. E. & Schaefer, J. M. Beryllium-10 chronology of early and late Wisconsinan moraines in the Revelation Mountains, Alaska: insights into the forcing of Wisconsinan glaciation in Beringia. Quat. Sci. Rev. 197, 129–141 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Menounos, B. et al. Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene Termination. Science 358, 781–784 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dulfer, H. E., Margold, M., Engel, Z., Braucher, R. & Team, A. Using 10Be dating to determine when the Cordilleran Ice Sheet stopped flowing over the Canadian Rocky Mountains. Quat. Res. 102, 222–233 (2021).

    Article 

    Google Scholar
     

  • R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).

  • Seguinot, J. et al. Cordilleran ice sheet glacial cycle simulations continuous variables (Zenodo, 2020); https://doi.org/10.5281/zenodo.3606536

  • Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Herbert, T. D. et al. Collapse of the California Current during glacial maxima linked to climate change on land. Science 293, 71–76 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roberts, M. V. The Temporal and Spatial Distribution of Dissolved and Particulate Iron Over the Gulf of Alaska Shelf. Thesis, Univ. Alaska Fairbanks (2018).

  • Tagliabue, A. et al. A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean. Biogeosciences 9, 2333–2349 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • GEOTRACES Intermediate Data Product Group. The GEOTRACES Intermediate Data Product 2021 (IDP2021) (NERC EDS British Oceanographic Data Centre NOC, 2021); https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/cf2d9ba9-d51d-3b7c-e053-8486abc0f5fd/

  • Hauri, C. et al. A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification in the Gulf of Alaska. Biogeosciences 17, 3837–3857 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Garcia, H. E. et al. World Ocean Atlas 2018. Vol. 4: Dissolved Inorganic Nutrients (Phosphate, Nitrate and Nitrate+Nitrite, Silicate) NOAA Atlas NESDIS 84 (Tech. ed. Mishonov, A.) (NOAA, 2019).

  • Zweng, M. M. et al. World Ocean Atlas 2018. Vol. 2: Salinity NOAA Atlas NESDIS 82 (Technical ed. Mishonov, A.) (NOAA, 2019).

  • Le Maitre, R. W. et al. Igneous Rocks: A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (Cambridge Univ. Press, 2002).

  • McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link