May 26, 2024
Wavefunction matching for solving quantum many-body problems – Nature

Wavefunction matching for solving quantum many-body problems – Nature

  • Assaad, F. & Evertz, H. in Computational Many-Particle Physics (eds Fehske, H., Weiße, A. & Schneider, R.) 277–356 (Springer, 2008).

  • Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Orús, R. A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Dovesi, R., Civalleri, B., Roetti, C., Saunders, V. R. & Orlando, R. Ab initio quantum simulation in solid state chemistry. Rev. Comput. Chem. 21, 1–125 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Friesner, R. A. Ab initio quantum chemistry: methodology and applications. Proc. Natl Acad. Sci. USA 102, 6648–6653 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartlett, R. J. & Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aymar, M., Greene, C. H. & Luc-Koenig, E. Multichannel Rydberg spectroscopy of complex atoms. Rev. Mod. Phys. 68, 1015 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stone, A. & Misquitta, A. Atom–atom potentials from ab initio calculations. Int. Rev. Phys. Chem. 26, 193–222 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Motta, M. & Zhang, S. Ab initio computations of molecular systems by the auxiliary-field quantum Monte Carlo method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1364 (2018).

    Article 

    Google Scholar
     

  • Barrett, B. R., Navrátil, P. & Vary, J. P. Ab initio no core shell model. Prog. Part. Nucl. Phys. 69, 131–181 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hagen, G., Papenbrock, T., Hjorth-Jensen, M. & Dean, D. J. Coupled-cluster computations of atomic nuclei. Rep. Prog. Phys. 77, 096302 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Carlson, J. et al. Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 87, 1067 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Hergert, H., Bogner, S. K., Morris, T. D., Schwenk, A. & Tsukiyama, K. The in-medium similarity renormalization group: a novel ab initio method for nuclei. Phys. Rep. 621, 165–222 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Stroberg, S., Holt, J., Schwenk, A. & Simonis, J. Ab initio limits of atomic nuclei. Phys. Rev. Lett. 126, 022501 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, D. Lattice simulations for few- and many-body systems. Prog. Part. Nucl. Phys. 63, 117–154 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lähde, T. A. & Meißner, U.-G. Nuclear Lattice Effective Field Theory: An Introduction Vol. 975 (Springer, 2019).

  • Epelbaum, E., Hammer, H.-W. & Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Machleidt, R. & Entem, D. Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1–75 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ekström, A. et al. What is ab initio in nuclear theory? Front. Phys. 11, 1129094 (2023).

    Article 

    Google Scholar
     

  • Machleidt, R. What is ab initio? Few Body Syst. 64, 77 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Carlson, J. et al. Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 87, 1067–1118 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Pastore, S. et al. Quantum Monte Carlo calculations of weak transitions in A = 6–10 nuclei. Phys. Rev. C 97, 022501 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gandolfi, S., Lonardoni, D., Lovato, A. & Piarulli, M. Atomic nuclei from quantum Monte Carlo calculations with chiral EFT interactions. Front. Phys. 8, 117 (2020).

    Article 

    Google Scholar
     

  • Lu, B.-N. et al. Essential elements for nuclear binding. Phys. Lett. B 797, 134863 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lu, B.-N. et al. Ab initio nuclear thermodynamics. Phys. Rev. Lett. 125, 192502 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, S. et al. Emergent geometry and duality in the carbon nucleus. Nat. Commun. 14, 2777 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gnech, A., Fore, B. & Lovato, A. Distilling the essential elements of nuclear binding via neural-network quantum states. Preprint at https://arxiv.org/abs/2308.16266 (2023).

  • Lu, B.-N. et al. Perturbative quantum Monte Carlo method for nuclear physics. Phys. Rev. Lett. 128, 242501 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Machleidt, R. & Sammarruca, F. Chiral EFT based nuclear forces: achievements and challenges. Phys. Scr. 91, 083007 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Tjon, J. A. Bound states of 4He with local interactions. Phys. Lett. B 56, 217–220 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Platter, L., Hammer, H. W. & Meißner, U.-G. On the correlation between the binding energies of the triton and the alpha-particle. Phys. Lett. B 607, 254–258 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, N. et al. Neutron–proton scattering with lattice chiral effective field theory at next-to-next-to-next-to-leading order. Phys. Rev. C 98, 044002 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ekström, A. et al. Accurate nuclear radii and binding energies from a chiral interaction. Phys. Rev. C 91, 051301 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Drischler, C., Hebeler, K. & Schwenk, A. Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation. Phys. Rev. Lett. 122, 042501 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lonardoni, D. et al. Properties of nuclei up to A = 16 using local chiral interactions. Phys. Rev. Lett. 120, 122502 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morris, T. D. et al. Structure of the lightest tin isotopes. Phys. Rev. Lett. 120, 152503 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Piarulli, M. et al. Light-nuclei spectra from chiral dynamics. Phys. Rev. Lett. 120, 052503 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Somà, V., Navrátil, P., Raimondi, F., Barbieri, C. & Duguet, T. Novel chiral Hamiltonian and observables in light and medium-mass nuclei. Phys. Rev. C 101, 014318 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gysbers, P. et al. Discrepancy between experimental and theoretical β-decay rates resolved from first principles. Nat. Phys. 15, 428–431 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Maris, P. et al. Light nuclei with semilocal momentum-space regularized chiral interactions up to third order. Phys. Rev. C 103, 054001 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hebeler, K. Three-nucleon forces: implementation and applications to atomic nuclei and dense matter. Phys. Rep. 890, 1–116 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiang, W. G. et al. Accurate bulk properties of nuclei from A = 2 to from potentials with Δ isobars. Phys. Rev. C 102, 054301 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wirth, R., Yao, J. M. & Hergert, H. Ab initio calculation of the contact operator contribution in the standard mechanism for neutrinoless double beta decay. Phys. Rev. Lett. 127, 242502 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, B. et al. Ab initio predictions link the neutron skin of 208Pb to nuclear forces. Nat. Phys. 18, 1196–1200 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stroberg, S. R. et al. A nucleus-dependent valence-space approach to nuclear structure. Phys. Rev. Lett. 118, 032502 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hüther, T., Vobig, K., Hebeler, K., Machleidt, R. & Roth, R. Family of chiral two- plus three-nucleon interactions for accurate nuclear structure studies. Phys. Lett. B 808, 135651 (2020).

    Article 

    Google Scholar
     

  • Hoppe, J., Drischler, C., Hebeler, K., Schwenk, A. & Simonis, J. Probing chiral interactions up to next-to-next-to-next-to-leading order in medium-mass nuclei. Phys. Rev. C 100, 024318 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nosyk, Y., Entem, D. R. & Machleidt, R. Nucleon–nucleon potentials from Δ-full chiral effective-field-theory and implications. Phys. Rev. C 104, 054001 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Elhatisari, S. et al. Nuclear binding near a quantum phase transition. Phys. Rev. Lett. 117, 132501 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kanada-En’yo, Y. & Lee, D. Effective interactions between nuclear clusters. Phys. Rev. C 103, 024318 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bertulani, C. A., Hammer, H. W. & Van Kolck, U. Effective field theory for halo nuclei. Nucl. Phys. A 712, 37–58 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Higa, R., Hammer, H. W. & van Kolck, U. Alpha alpha scattering in halo effective field theory. Nucl. Phys. A 809, 171–188 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Rotureau, J. & van Kolck, U. Effective field theory and the Gamow shell model: the 6He halo nucleus. Few Body Syst. 54, 725–735 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hammer, H. W., Ji, C. & Phillips, D. R. Effective field theory description of halo nuclei. J. Phys. G 44, 103002 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ishikawa, S. & Robilotta, M. R. Two-pion exchange three-nucleon potential: O(q4) chiral expansion. Phys. Rev. C 76, 014006 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Bernard, V., Epelbaum, E., Krebs, H. & Meißner, U.-G. Subleading contributions to the chiral three-nucleon force. I. Long-range terms. Phys. Rev. C 77, 064004 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Bernard, V., Epelbaum, E., Krebs, H. & Meißner, U. G. Subleading contributions to the chiral three-nucleon force II: short-range terms and relativistic corrections. Phys. Rev. C 84, 054001 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Bogner, S. K., Kuo, T. T. S., Schwenk, A., Entem, D. R. & Machleidt, R. Towards a model independent low momentum nucleon nucleon interaction. Phys. Lett. B 576, 265–272 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bogner, S. K., Furnstahl, R. J. & Perry, R. J. Similarity renormalization group for nucleon–nucleon interactions. Phys. Rev. C 75, 061001 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Bogner, S., Furnstahl, R. & Schwenk, A. From low-momentum interactions to nuclear structure. Prog. Part. Nucl. Phys. 65, 94–147 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Feldmeier, H., Neff, T., Roth, R. & Schnack, J. A unitary correlation operator method. Nucl. Phys. A 632, 61–95 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Neff, T. & Feldmeier, H. Tensor correlations in the unitary correlation operator method. Nucl. Phys. A 713, 311–371 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Roth, R., Neff, T. & Feldmeier, H. Nuclear structure in the framework of the unitary correlation operator method. Prog. Part. Nucl. Phys. 65, 50–93 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bovermann, L., Epelbaum, E., Krebs, H. & Lee, D. Lattice improvement of nuclear shape calculations using unitary transformations. Proc. Sci. https://doi.org/10.22323/1.396.0369 (2022).


    Google Scholar
     

  • Akmal, A., Pandharipande, V. R. & Ravenhall, D. G. The equation of state of nucleon matter and neutron star structure. Phys. Rev. C 58, 1804–1828 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gandolfi, S., Carlson, J. & Reddy, S. The maximum mass and radius of neutron stars and the nuclear symmetry energy. Phys. Rev. C 85, 032801 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Tews, I., Krüger, T., Hebeler, K. & Schwenk, A. Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory. Phys. Rev. Lett. 110, 032504 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ekström, A., Hagen, G., Morris, T. D., Papenbrock, T. & Schwartz, P. D. Δ isobars and nuclear saturation. Phys. Rev. C 97, 024332 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Source link