May 6, 2024
3D-printed machines that manipulate microscopic objects using capillary forces – Nature

3D-printed machines that manipulate microscopic objects using capillary forces – Nature

  • Bowden, N., Terfort, A., Carbeck, J. & Whitesides, G. M. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276, 233–235 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tien, J., Breen, T. L. & Whitesides, G. M. Crystallization of millimeter-scale objects with use of capillary forces. J. Am. Chem. Soc. 120, 12670–12671 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Liu, I. B., Sharifi-Mood, N. & Stebe, K. J. Capillary assembly of colloids: interactions on planar and curved interfaces. Annu. Rev. Condens. Matter Phys. 9, 283–305 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yao, L. et al. Near field capillary repulsion. Soft Matter 9, 779–786 (2012).

    Article 
    ADS 

    Google Scholar
     

  • de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2004); https://doi.org/10.1007/978-0-387-21656-0.

  • Vella, D. & Mahadevan, L. The “Cheerios effect”. Am. J. Phys. 73, 817–825 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho, I., Pucci, G. & Harris, D. M. Direct measurement of capillary attraction between floating disks. Phys. Rev. Lett. 123, 254502 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Artin, E. Theory of braids. Ann. Math. 48, 101–126 (1947).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Branscomb, D., Beale, D. & Broughton, R. New directions in braiding. J. Eng. Fibers Fabrics 8, 11–24 (2013).


    Google Scholar
     

  • Kyosev, Y. Braiding Technology for Textiles (Woodhead, 2014).

  • Phillips, J. P. Carbon nano tube Litz wire for low loss inductors and resonators. US patent 8,017,864 (2011).

  • Marchand, P. et al. Braiding mechanism and methods of use. US patent 8,261,648 (2012).

  • Giszter, S., Kim, T. G. & Ramakrishnan, A. Method and apparatus for braiding micro strands. US patent 8,534,176 (2013).

  • Head, A. A. & Ivers, V. M. Rapidly configurable braiding machine. US patent application 14/959,661 (2016).

  • Duwel, A., LeBlanc, J., Carter, D. J. & Kim, E. S. Directed assembly of braided, woven or twisted wire. US patent application 15/248,238 (2017).

  • Quick, R., Thress, C. & Ulrich, G. Braiding machine and methods of use. US patent application 16/754,830 (2020).

  • Zhang, M., Atkinson, K. R. & Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306, 1358–1361 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Murnen, H. K., Rosales, A. M., Jaworski, J. N., Segalman, R. A. & Zuckermann, R. N. Hierarchical self-assembly of a biomimetic diblock copolypeptoid into homochiral superhelices. J. Am. Chem. Soc. 132, 16112–16119 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y. et al. Braiding ultrathin Au nanowires into ropes. J. Am. Chem. Soc. 142, 10629–10633 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joanny, J. F. & de Gennes, P. G. A model for contact angle hysteresis. J. Chem. Phys. 81, 552–562 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, G., Liu, J., Zheng, L., Huang, W. & Zhang, H. Preparation of weavable, all-carbon fibers for non-volatile memory devices. Angew. Chem. 125, 13593–13597 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Howe, G. W. O. & Mather, T. The high-frequency resistance of multiply-stranded insulated wire. Proc. R. Soc. Lond. A 93, 468–492 (1917).

    Article 
    ADS 

    Google Scholar
     

  • Hurley, W. G., Duffy, M. C., Acero, J., Ouyang, Z. & Zhang, J. Magnetic circuit design for power electronics. In Power Electronics Handbook (ed. Rashid, M. H.) 571–589 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-811407-0.00019-2.

  • Schulz, M. J. et al. New applications and techniques for nanotube superfiber development. In Nanotube Superfiber Materials (eds Schulz, M. J. et al.) 33–59 (William Andrew, 2014).

  • Aydin, A. Electrospun Polymer Nanofiber Scaffolds for Functionalized Long Sub-micron Diameter Cables. PhD thesis, Harvard Univ. (2019).

  • Lima, M. D. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338, 928–932 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Foerster, S. A. & Clemente, S. Optimized suture braid. US patent application 10/803,455 (2006).

  • Ayranci, C. & Carey, J. 2D braided composites: a review for stiffness critical applications. Compos. Struct. 85, 43–58 (2008).

    Article 

    Google Scholar
     

  • Singh, P. & Joseph, D. D. Fluid dynamics of floating particles. J. Fluid Mech. 530, 31–80 (2005).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Mao, Z.-S., Yang, C. & Chen, J. Mathematical modeling of a hydrophilic cylinder floating on water. J. Colloid Interface Sci. 377, 463–468 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Malagnino, N., Pesce, G., Sasso, A. & Arimondo, E. Measurements of trapping efficiency and stiffness in optical tweezers. Opt. Commun. 214, 15–24 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Z., Wang, X., Liu, J., Dai, C. & Sun, Y. Robotic micromanipulation: fundamentals and applications. Annu. Rev. Control Robot. Auton. Syst. 2, 181–203 (2019).

    Article 

    Google Scholar
     

  • Wang, X.-B., Huang, Y., Gascoyne, P. R. C. & Becker, F. F. Dielectrophoretic manipulation of particles. IEEE Trans. Ind. Appl. 33, 660–669 (1997).

    Article 

    Google Scholar
     

  • Tanase, M., Biais, N. & Sheetz, M. Magnetic tweezers in cell biology. In Methods in Cell Biology Vol. 83 (eds Wang, Y.-L. & Discher, D. E.) 473–493 (Academic, 2007).

  • Schneider, T. M., Mandre, S. & Brenner, M. P. Algorithm for a microfluidic assembly line. Phys. Rev. Lett. 106, 094503 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shenoy, A., Rao, C. V. & Schroeder, C. M. Stokes trap for multiplexed particle manipulation and assembly using fluidics. Proc. Nat. Am. Soc. 113, 3976–3981 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Manipulation of nanoparticles and biomolecules by electric field and surface tension. Comput. Meth. Appl. Mech. Eng. 197, 2156–2172 (2008).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Source link