May 8, 2024
700,000 years of tropical Andean glaciation – Nature

700,000 years of tropical Andean glaciation – Nature

  • Woods, A. et al. Andean drought and glacial retreat tied to Greenland warming during the last glacial period. Nat. Commun. 11, 5135 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shackleton, N. J. & Opdyke, N. D. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quat. Res. 3, 39–55 (1973).

    CAS 
    Article 

    Google Scholar
     

  • Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    ADS 

    Google Scholar
     

  • Denton, G. H. & Hughes, T. The Last Great Ice Sheets (Wiley, 1981).

  • Ruddiman, W. F. Earths Climate: Past and Future (W.H. Freeman and Company, 2014).

  • Smith, J. A., Seltzer, G. O., Farber, D. L., Rodbell, D. T. & Finkel, R. C. Early local last glacial maximum in the tropical Andes. Science 308, 678–681 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Putnam, A. E. et al. The Last Glacial Maximum at 44°S documented by a 10Be moraine chronology at Lake Ohau, Southern Alps of New Zealand. Quat. Sci. Rev. 62, 114–141 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Rodbell, D. T., Seltzer, G. O., Mark, B. G., Smith, J. A. & Abbott, M. B. Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion. Quat. Sci. Rev. 27, 1612–1626 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Hooghiemstra, H., Melice, J. L., Berger, A. & Shackleton, N. J. Frequency spectra and paleoclimatic variability of the high-resolution 30–1450 ka Funza I pollen record (Eastern Cordillera Colombia). Quat. Sci. Rev. 12, 141–156 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Fritz, S. C. et al. Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project. Quat. Res. 68, 410–420 (2007).

    Article 

    Google Scholar
     

  • Brook, E. J., Sowers, T. & Orchardo, J. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273, 1087–1091 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Seltzer, G., Rodbell, D. & Burns, S. Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28, 35–38 (2000).

    ADS 
    Article 

    Google Scholar
     

  • Hatfield, R. G. et al. Stratigraphic correlation and splice generation for sediments recovered from a large-lake drilling project: an example from Lake Junín, Peru. J. Paleolimnol. 63, 83–100 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Chen, C. Y. et al. U-Th dating of lake sediments: lessons from the 700 ka sediment record of Lake Junín, Peru. Quat. Sci. Rev. 244, 106422 (2020).

    Article 

    Google Scholar
     

  • Hatfield, R. G. et al. Paleomagnetic constraint of the Brunhes age sedimentary record from Lake Junín, Peru. Front. Earth Sci. 8, 147 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Channell, J. E. T., Hodell, D. A., Singer, B. S. & Xuan, C. Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama-Brunhes boundary and late Matuyama Chron. Geochem. Geophys. Geosyst. 11, Q0AA12 (2010).

    Article 

    Google Scholar
     

  • Smith, J. A., Seltzer, G. O., Rodbell, D. T. & Klein, A. G. Regional synthesis of last glacial maximum snowlines in the tropical Andes, South America. Quat. Int. 138–139, 145–167 (2005).

    Article 

    Google Scholar
     

  • Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–797 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150–3184 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Obliquity pacing of the western Pacific Intertropical Convergence Zone over the past 282,000 years. Nat. Commun. 6, 10018 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Baker, P. A. et al. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, 698–700 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shakun, J. D. et al. Regional and global forcing of glacier retreat during the last deglaciation. Nat. Commun. 6, 8059 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Stoll, H. 30 years of the iron hypothesis of ice ages. Nature 578, 370–371 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Thompson, L. G. et al. A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 1858–1864 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Doughty, A. M., Kaplan, M. R., Peltier, C. & Barker, S. A. A maximum in global glacier extent during MIS 4. Quat. Sci. Rev. 261, 106948 (2021).

    Article 

    Google Scholar
     

  • Kanner, L. C., Burns, S. J., Cheng, H. & Edwards, R. L. High-latitude forcing of the South American summer monsoon during the last glacial. Science 335, 570–573 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bond, G. et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147 (1993).

    ADS 
    Article 

    Google Scholar
     

  • Baker, P. A. & Fritz, S. C. Nature and causes of Quaternary climate variation of tropical South America. Quat. Sci. Rev. 124, 31–47 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Sagredo, E., Rupper, S. & Lowell, T. Sensitivities of the equilibrium line altitude to temperature and precipitation changes along the Andes. Quat. Res. 81, 355–366 (2014).

    Article 

    Google Scholar
     

  • Kaser, G. Glacier-climate interaction at low latitudes. J. Glaciol. 47, 195–204 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Burns, S. J., Welsh, L. K., Scroxton, N., Cheng, H. & Edwards, R. L. Millennial and orbital scale variability of the South American Monsoon during the penultimate glacial period. Sci. Rep. 9, 1234 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Barker, S. et al. 800,000 years of abrupt climate variability. Science 334, 347–351 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jomelli, V. et al. A major advance of tropical Andean glaciers during the Antarctic cold reversal. Nature 513, 224–228 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • He, F. et al. Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature 494, 81–85 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kaser, G., Juen, I., Georges, C., Gómez, J. & Tamayo, W. The impact of glaciers on the runoff and the reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Peru. J. Hydrol. 282, 130–144 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Sobel, A. H. & Bretherton, C. S. Modeling tropical precipitation in a single column. J. Clim. 13, 4378–4392 (2000).

    ADS 
    Article 

    Google Scholar
     

  • Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    ADS 
    Article 

    Google Scholar
     

  • Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Instituto Geográfico Nacional (IGN). Ondores topographic map, scale 1:100,000. IGN, Lima, Perú (1968).

  • Instituto Geográfico Nacional (IGN). Ulcumayo topographic map, scale 1:100,000. IGN, Lima, Perú (1985).

  • Instituto Geográfico Nacional (IGN). Cerro de Pasco topographic map, scale 1:100,000. IGN, Lima, Perú (2000).

  • Instituto Geográfico Nacional (IGN). Tarma topographic map, scale 1:100,000. IGN, Lima, Perú (2000).

  • Rodbell, D. T., Abbott, M. B. & the 2011 ICDP Lake Junin Working Group, Workshop on drilling of Lake Junin, Peru: potential for development of a continuous tropical climate record. Sci. Drill. 13, 58–60 (2012).

  • DeMaster, D. J. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45, 1715–1732 (1981).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).


    Google Scholar
     

  • Lemieux-Dudon, B. et al. Consistent dating for Antarctic and Greenland ice cores. Quat. Sci. Rev. 29, 8–20 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Source link