May 30, 2024

A 16-parts-per-trillion measurement of the antiproton-to-proton charge–mass ratio – Nature

  • 1.

    Dine, M. & Kusenko, A. Origin of the matter–antimatter asymmetry. Rev. Mod. Phys. 76, 1–30 (2003).

    ADS 

    Google Scholar
     

  • 2.

    Van Dyck Jr, R. S., Schwinberg, P. B. & Dehmelt, H. G. New high-precision comparison of electron and positron g factors. Phys. Rev. Lett. 59, 26–29 (1987).

    ADS 

    Google Scholar
     

  • 3.

    Ahmadi, M. et al. Characterization of the 1S–2S transition in antihydrogen. Nature 557, 71–75 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 4.

    Hori, M. et al. Buffer-gas cooling of antiprotonic helium to 1.5 K to 1.7 K, and antiproton-to-electron mass ratio. Science 354, 610–614 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 5.

    Schwingenheuer, B. et al. CPT tests in the neutral kaon system. Phys. Rev. Lett. 74, 4376–4379 (1995).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 6.

    Ulmer, S. et al. High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 524, 196–199 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 7.

    Smorra, C. et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371–374 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 8.

    Schneider, G. et al. Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision. Science 358, 1081–1084 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 9.

    DiSciacca, J. et al. One-particle measurement of the antiproton magnetic moment. Phys. Rev. Lett. 110, 130801 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 10.

    Ding, Y. & Rawnak, M. F. Lorentz and CPT tests with charge-to-mass ratio comparisons in Penning traps. Phys. Rev. D 102, 056009 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 11.

    Hughes, R. J. & Holzscheiter, M. H. Constraints on the gravitational properties of antiprotons and positrons from cyclotron-frequency measurements. Phys. Rev. Lett. 66, 854–857 (1991).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 12.

    Lehnert, R. CPT symmetry and its violation. Symmetry 8, 114 (2016).

    MathSciNet 

    Google Scholar
     

  • 13.

    Lüders, G. Proof of the TCP theorem. Ann. Phys. 2, 1–15 (1957).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar
     

  • 14.

    Edwards, B. R. & Kostelecký, V. A. Riemann–Finsler geometry and Lorentz-violating scalar fields. Phys. Lett. B 786, 319–326 (2018).

    MathSciNet 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • 15.

    Tsujikawa, S. Quintessence: a review. Class. Quantum Gravity 30, 214003 (2013).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar
     

  • 16.

    Kostelecký, V. A. & Potting, R. CPT and strings. Nucl. Phys. B 359, 545–570 (1991).

    MathSciNet 
    ADS 

    Google Scholar
     

  • 17.

    Weinberg, S. Cosmology (Oxford Univ. Press, 2008).

  • 18.

    Hughes, R. J. Constraints on new macroscopic forces from gravitational redshift experiments. Phys. Rev. D 41, 2367–2373 (1990).

    CAS 
    ADS 

    Google Scholar
     

  • 19.

    Smorra, C. et al. BASE – the Baryon Antibaryon Symmetry Experiment. Eur. Phys. J. Spec. Top. 224, 3055–3108 (2015).


    Google Scholar
     

  • 20.

    Sellner, S. et al. Improved limit on the directly measured antiproton lifetime. New J. Phys. 19, 083023 (2017).

    ADS 

    Google Scholar
     

  • 21.

    Smorra, C. et al. A reservoir trap for antiprotons. Int. J. Mass Spectrom. 389, 10–13 (2015).

    CAS 

    Google Scholar
     

  • 22.

    Gabrielse, G., Haarsma, L. & Rolston, S. L. Open-endcap Penning traps for high precision experiments. Int. J. Mass Spectrom. 88, 319–332 (1989).

    CAS 
    ADS 

    Google Scholar
     

  • 23.

    Brown, L. S. & Gabrielse, G. Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986).

    CAS 
    ADS 

    Google Scholar
     

  • 24.

    Gabrielse, G. et al. Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198–3201 (1999).

    CAS 
    ADS 

    Google Scholar
     

  • 25.

    Nagahama, H. et al. Highly sensitive superconducting circuits at 700 kHz with tunable quality factors for image-current detection of single trapped antiprotons. Rev. Sci. Instrum. 87, 113305 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 26.

    BASE Collaboration. Future Program of the BASE Experiment at the Antiproton Decelerator of CERN. Document no. CERN-SPSC-2019-047; SPSC-P-363 (CERN, 2019); available at https://cds.cern.ch/record/2702758.

  • 27.

    Devlin, J. A. et al. Superconducting solenoid system with adjustable shielding factor for precision measurements of the properties of the antiproton. Phys. Rev. Appl. 12, 044012 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 28.

    Heiße, F. et al. High-precision measurement of the proton’s atomic mass. Phys. Rev. Lett. 119, 033001 (2017).

    PubMed 
    ADS 

    Google Scholar
     

  • 29.

    Cornell, E. A., Weisskoff, R. M., Boyce, K. R. & Pritchard, D. E. Mode coupling in a Penning trap: π pulses and a classical avoided crossing. Phys. Rev. A 41, 312–315 (1990).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 30.

    Ketter, J., Eronen, T., Höcker, M., Streubel, S. & Blaum, K. First-order perturbative calculation of the frequency-shifts caused by static cylindrically-symmetric electric and magnetic imperfections of a Penning trap. Int. J. Mass Spectrom. 358, 1–16 (2014).

    CAS 

    Google Scholar
     

  • 31.

    Hoaglin, D. C., Mosteller, F. & Tukey, J. W. Understanding Robust and Exploratory Data Analysis (Wiley, 2000).

  • 32.

    Le Cam, L. Asymptotic Methods in Statistical Decision Theory (Springer, 2012).

  • 33.

    Rao, C. R. Information and the accuracy attainable in the estimation of statistical parameters. In Breakthroughs in Statistics (eds Kotz S. & Johnson, N. L.) 235–247 (Springer, 1992).

  • 34.

    Natarayan, V. Penning Trap Mass Spectroscopy at 0.1 ppb. PhD thesis, MIT (1993).

  • 35.

    Wang, Y. & Liu, Q. Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of stock–recruitment relationships. Fish. Res. 77, 220–225 (2006).


    Google Scholar
     

  • 36.

    Charlton, M., Eriksson, S. & Shore, G. Testing fundamental physics in antihydrogen experiments. Preprint at https://arxiv.org/abs/2002.09348 (2020).

  • 37.

    Kenyon, I. A recalculation on the gravitational mass difference between the K0 and ({bar{K}}^{0}) mesons. Phys. Lett. B 237, 274–277 (1990).

    CAS 

    Google Scholar
     

  • 38.

    Tchernin, C., Lau, E. T., Stapelberg, S., Hug, D. & Bartelmann, M. Characterizing galaxy clusters by their gravitational potential: systematics of cluster potential reconstruction. Astron. Astrophys. 644, A126 (2020).

    ADS 

    Google Scholar
     

  • 39.

    Chardin, G. & Manfredi, G. Gravity, antimatter and the Dirac–Milne universe. Hyperfine Interact. 239, 45 (2018).

    ADS 

    Google Scholar
     

  • 40.

    Super-Kamiokande Collaboration. Search for proton decay via pe+π0 and pμ+π0 in 0.31 megaton years exposure of the Super-Kamiokande water Cherenkov detector. Phys. Rev. D 95, 012004 (2017).

    ADS 

    Google Scholar
     

  • 41.

    Perez, P. & Sacquin, Y. The GBAR experiment: gravitational behaviour of antihydrogen at rest. Class. Quantum Gravity 29, 184008 (2012).

    ADS 

    Google Scholar
     

  • 42.

    Bertsche, W. A. Prospects for comparison of matter and antimatter gravitation with ALPHA-g. Phil. Trans. R. Soc. A 376, 20170265 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 43.

    Scampoli, P. & Storey, J. The AEgIS experiment at CERN for the measurement of antihydrogen gravity acceleration. Mod. Phys. Lett. A 29, 1430017 (2014).

    ADS 

    Google Scholar
     

  • 44.

    Bluhm, R., Kostelecký, V. A. & Russell, N. CPT and Lorentz tests in Penning traps. Phys. Rev. D 57, 3932–3943 (1998).

    CAS 
    ADS 

    Google Scholar
     

  • 45.

    Kosteleckỳ, V. A. & Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83, 11–31 (2011).

    ADS 

    Google Scholar
     

  • 46.

    Smorra, C. et al. Technical Design Report of BASE-STEP (CERN, 2021); https://cds.cern.ch/record/2756508/files/SPSC-TDR-007.pdf

  • 47.

    Thompson, J. K., Rainville, S. & Pritchard, D. E. Cyclotron frequency shifts arising from polarization forces. Nature 430, 58–61 (2004).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 48.

    Rau, S. et al. Penning trap mass measurements of the deuteron and the HD+ molecular ion. Nature 585, 43–47 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 49.

    Kortunov, I. et al. Proton–electron mass ratio by high-resolution optical spectroscopy of ion ensembles in the resolved carrier regime. Nat. Phys. 17, 569–573 (2021).

    CAS 

    Google Scholar
     

  • 50.

    Patra, S. et al. Proton–electron mass ratio from laser spectroscopy of HD+ at the part-per-trillion level. Science 369, 1238–1241 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 51.

    Kramida, A., Ralchenko, Yu., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database (ver. 5.8). (National Institute of Standards and Technology, accessed 26 November 2020); https://doi.org/10.18434/T4W30F.

  • 52.

    Parthey, C. G. et al. Improved measurement of the hydrogen 1S–2S transition frequency. Phys. Rev. Lett. 107, 203001 (2011).

    PubMed 
    ADS 

    Google Scholar
     

  • 53.

    Jentschura, U. D., Kotochigova, S., Le Bigot, E.-O., Mohr, P. J. & Taylor, B. N. Precise calculation of transition frequencies of hydrogen and deuterium based on a least-squares analysis. Phys. Rev. Lett. 95, 163003 (2005).

    PubMed 
    ADS 

    Google Scholar
     

  • 54.

    Lykke, K. R., Murray, K. K. & Lineberger, W. C. Threshold photodetachment of H. Phys. Rev. A 43, 6104–6107 (1991).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 55.

    Sahoo, B. Determination of the dipole polarizability of the alkali-metal negative ions. Phys. Rev. A 102, 022820 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 56.

    Wineland, D. & Dehmelt, H. Principles of the stored ion calorimeter. J. Appl. Phys. 46, 919–930 (1975).

    ADS 

    Google Scholar
     

  • 57.

    D’Urso, B., Odom, B. & Gabrielse, G. Feedback cooling of a one-electron oscillator. Phys. Rev. Lett. 90, 043001 (2003).

    PubMed 
    ADS 

    Google Scholar
     

  • Source link