May 28, 2024

A catalysis-driven artificial molecular pump

  • 1.

    Skou, J. C. The identification of the sodium–potassium pump (Nobel Lecture). Angew. Chem. Int. Ed. 37, 2320–2328 (1998).

    CAS 

    Google Scholar
     

  • 2.

    Lodish, H. et al. Transport across cell membranes. In Molecular Cell Biology Vol. 4, Ch. 15 (W. H. Freeman, 2000).

  • 3.

    Du, D. et al. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol. 16, 523–539 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Qiu, Y., Feng, Y., Guo, Q.-H., Astumian, R. D. & Stoddart, J. F. Pumps through the ages. Chem 6, 1952–1977 (2020).

    CAS 

    Google Scholar
     

  • 5.

    Steinberg-Yfrach, G. et al. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 385, 239–241 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Bennett, I. M. et al. Active transport of Ca2+ by an artificial photosynthetic membrane. Nature 420, 398–401 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Bhosale, S. et al. Photoproduction of proton gradients with π-stacked fluorophore scaffolds in lipid bilayers. Science 313, 84–86 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Photoactivated directionally controlled transit of a non-symmetric molecular axle through a macrocycle. Angew. Chem. Int. Ed. 51, 4223–4226 (2012).

    CAS 

    Google Scholar
     

  • 10.

    Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Pezzato, C. et al. An efficient artificial molecular pump. Tetrahedron 73, 4849–4857 (2017).

    CAS 

    Google Scholar
     

  • 13.

    Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Pezzato, C. et al. Controlling dual molecular pumps electrochemically. Angew. Chem. Int. Ed. 57, 9325–9329 (2018).

    CAS 

    Google Scholar
     

  • 15.

    Qiu, Y. et al. A molecular dual pump. J. Am. Chem. Soc. 141, 17472–17476 (2019).

    CAS 

    Google Scholar
     

  • 16.

    Qiu, Y. et al. A precise polyrotaxane synthesizer. Science 368, 1247–1253 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Astumian, R. D. & Bier, M. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Biophys. J. 70, 637–653 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    CAS 

    Google Scholar
     

  • 19.

    Astumian, R. D. Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Phys. Chem. Chem. Phys. 9, 5067–5083 (2007).

    CAS 

    Google Scholar
     

  • 20.

    Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Astumian, R. D. How molecular motors work—insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017).

    CAS 

    Google Scholar
     

  • 22.

    Pezzato, C., Cheng, C., Stoddart, J. F. & Astumian, R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46, 5491–5507 (2017).

    CAS 

    Google Scholar
     

  • 23.

    Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    CAS 

    Google Scholar
     

  • 24.

    Wang, Q., Chen, D. & Tian, H. Artificial molecular machines that can perform work. Sci. China Chem. 61, 1261–1273 (2018).

    CAS 

    Google Scholar
     

  • 25.

    Findlay, J. A. & Crowley, J. D. Functional nanomachines: recent advances in synthetic molecular machinery. Tetrahedron Lett. 59, 334–346 (2018).

    CAS 

    Google Scholar
     

  • 26.

    Coutrot, F. A focus on triazolium as a multipurpose molecular station for pH-sensitive interlocked crown-ether-based molecular machines. ChemistryOpen 4, 556–576 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Zheng, H. et al. A dual‐response [2]rotaxane based on a 1,2,3‐triazole ring as a novel recognition station. Chem. Eur. J. 15, 13253–13262 (2009).

    CAS 

    Google Scholar
     

  • 28.

    Fielden, S. D. P., Leigh, D. A., McTernan, C. T., Pérez-Saavedra, B. & Vitorica-Yrezabal, I. J. Spontaneous assembly of rotaxanes from a primary amine, crown ether and electrophile. J. Am. Chem. Soc. 140, 6049–6052 (2018).

    CAS 

    Google Scholar
     

  • 29.

    Tian, C., Fielden, S. D. P., Whitehead, G. F. S., Vitorica-Yrezabal, I. J. & Leigh, D. A. Weak functional group interactions revealed through metal-free active template rotaxane synthesis. Nat. Commun. 11, 744 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Tian, C., Fielden, S. D. P., Pérez-Saavedra, B., Vitorica-Yrezabal, I. J. & Leigh, D. A. Single-step enantioselective synthesis of mechanically planar chiral [2]rotaxanes using a chiral leaving group strategy. J. Am. Chem. Soc. 142, 9803–9808 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Denis, M. & Goldup, S. M. The active template approach to interlocked molecules: Principles, progress and applications. Nat. Rev. Chem. 1, 0061 (2017).

    CAS 

    Google Scholar
     

  • 32.

    Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Fyfe, M. C. T. et al. Anion assisted self-assembly. Angew. Chem. Int. Ed. Engl. 36, 2068–2070 (1997).

    CAS 

    Google Scholar
     

  • 34.

    della Sala, F., Neri, S., Maiti, S., Chen, J. L.-Y. & Prins, L. J. Transient self-assembly of molecular nanostructures driven by chemical fuels. Curr. Opin. Biotechnol. 46, 27–33 (2017).


    Google Scholar
     

  • 35.

    van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).


    Google Scholar
     

  • 36.

    Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Rieß, B., Grötsch, R. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem 6, 552–578 (2020).


    Google Scholar
     

  • 38.

    Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    CAS 

    Google Scholar
     

  • 39.

    Astumian, R. D. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys. J. 108, 291–303 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Howard, J. Protein power strokes. Curr. Biol. 16, R517–R519 (2006).

    CAS 

    Google Scholar
     

  • 41.

    Hwang, W. & Karplus, M. Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins. Proc. Natl Acad. Sci. USA 116, 19777–19785 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    van Dijk, L., Tilby, M. J., Szpera, R., Smith, O. A., Bunce, H. A. P. & Fletcher, S. P. Molecular machines for catalysis. Nat. Rev. Chem. 2, 0117 (2018).


    Google Scholar
     

  • 43.

    Zhang, L., Marcos, V. & Leigh, D. A. Molecular machines with bio-inspired mechanisms. Proc. Natl Acad. Sci. USA 115, 9397–9404 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Biagini, C. et al. Dissipative catalysis with a molecular machine. Angew. Chem. Int. Ed. 58, 9876–9880 (2019).

    CAS 

    Google Scholar
     

  • 45.

    Astumian, R. D. et al. Non-equilibrium kinetics and trajectory thermodynamics of synthetic molecular pumps. Mater. Chem. 4, 1304–1314 (2020).

    CAS 

    Google Scholar
     

  • 46.

    Heard, A. W. & Goldup, S. M. Simplicity in the design, operation and applications of mechanically interlocked molecular machines. ACS Cent. Sci. 6, 117–128 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Moulin, E., Faour, L., Carmona-Vargas, C. C. & Giuseppone, N. From molecular machines to stimuli-responsive materials. Adv. Mater. 32, 1906036 (2020).

    CAS 

    Google Scholar
     

  • Source link