May 23, 2024

A discrete neuronal population coordinates brain-wide developmental activity – Nature

  • Blankenship, A. G. & Feller, M. B. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci. 11, 18–29 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Ackman, J. B. & Crair, M. C. Role of emergent neural activity in visual map development. Curr. Opin. Neurobiol. 24, 166–175 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Akin, O., Bajar, B. T., Keles, M. F., Frye, M. A. & Zipursky, S. L. Cell-type-specific patterned stimulus-independent neuronal activity in the Drosophila visual system during synapse formation. Neuron 101, 894–904.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galli, L. & Maffei, L. Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242, 90–91 (1988).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Meister, M., Wong, R. O., Baylor, D. A. & Shatz, C. J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939–943 (1991).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Ackman, J. B., Burbridge, T. J. & Crair, M. C. Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490, 219–225 (2012).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bansal, A. et al. Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. J. Neurosci. 20, 7672–7681 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burbridge, T. J. et al. Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors. Neuron 84, 1049–1064 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLaughlin, T., Hindges, R. & O’Leary, D. D. Regulation of axial patterning of the retina and its topographic mapping in the brain. Curr. Opin. Neurobiol. 13, 57–69 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Sugie, A., Marchetti, G. & Tavosanis, G. Structural aspects of plasticity in the nervous system of Drosophila. Neural Dev. 13, 14 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiesinger, P. R. et al. Activity-independent prespecification of synaptic partners in the visual map of Drosophila. Curr. Biol. 16, 1835–1843 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Cell-type-specific labeling of synapses in vivo through synaptic tagging with recombination. Neuron 81, 280–293 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muthukumar, A. K., Stork, T. & Freeman, M. R. Activity-dependent regulation of astrocyte GAT levels during synaptogenesis. Nat. Neurosci. 17, 1340–1350 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takemura, S. Y. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175–181 (2013).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatachalam, K. & Montell, C. TRP channels. Annu. Rev. Biochem. 76, 387–417 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akitake, B. et al. Coordination and fine motor control depend on Drosophila TRPγ. Nat. Commun. 6, 7288 (2015).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Kanca, O. et al. An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. eLife 8, e51539 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. Z., Chien, F., Butler, A., Salkoff, L. & Montell, C. TRPγ, a drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26, 647–657 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Batut, P. & Gingeras, T. R. RAMPAGE: promoter activity profiling by paired-end sequencing of 5’-complete cDNAs. Curr. Protoc. Mol. Biol. 104, Unit 25B.11 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K. & Davis, R. L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768 (2003).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Akin, O. & Zipursky, S. L. Frazzled promotes growth cone attachment at the source of a Netrin gradient in the. eLife 5, e20762 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takemura, S. Y., Lu, Z. & Meinertzhagen, I. A. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol. 509, 493–513 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Kurmangaliyev, Y. Z., Yoo, J., Valdes-Aleman, J., Sanfilippo, P. & Zipursky, S. L. Transcriptional programs of circuit assembly in the Drosophila visual system. Neuron 108, 1045–1057.e6 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T. & Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523–1531 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, J. et al. Drosophila Fezf coordinates laminar-specific connectivity through cell-intrinsic and cell-extrinsic mechanisms. eLife 7, e33962 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isaacman-Beck, J. et al. SPARC enables genetic manipulation of precise proportions of cells. Nat. Neurosci. 23, 1168–1175 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiang, A. S. et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1–11 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pulver, S. R., Pashkovski, S. L., Hornstein, N. J., Garrity, P. A. & Griffith, L. C. Temporal dynamics of neuronal activation by channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J. Neurophysiol. 101, 3075–3088 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crair, M. C. Neuronal activity during development: permissive or instructive. Curr. Opin. Neurobiol. 9, 88–93 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Valdes-Aleman, J. et al. Comparative connectomics reveals how partner identity, location, and activity specify synaptic connectivity in Drosophila. Neuron 109, 105–122.e7 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulloney, B. & Smarandache, C. Fifty years of CPGs: two neuroethological papers that shaped the course of neuroscience. Front. Behav. Neurosci. 4, 45 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tritsch, N. X., Yi, E., Gale, J. E., Glowatzki, E. & Bergles, D. E. The origin of spontaneous activity in the developing auditory system. Nature 450, 50–55 (2007).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, H. C. et al. Spontaneous activity of cochlear hair cells triggered by fluid secretion mechanism in adjacent support cells. Cell 163, 1348–1359 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luhmann, H. J. et al. Spontaneous neuronal activity in developing neocortical networks: from single cells to large-scale interactions. Front. Neural Circuits 10, 40 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Özel, M. N. et al. Neuronal diversity and convergence in a visual system developmental atlas. Nature 589, 88–95 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helfrich-Förster, C. Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster. J. Comp. Neurol. 380, 335–354 (1997).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leong, A. T. et al. Long-range projections coordinate distributed brain-wide neural activity with a specific spatiotemporal profile. Proc. Natl Acad. Sci. USA 113, E8306–E8315 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischbach, K. F. & Dittrich, A. P. M. The optic lobe of Drosophila melanogaster. 1. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989).


    Google Scholar
     

  • Bainbridge, S. P. & Bownes, M. Staging the metamorphosis of Drosophila melanogaster. J. Embryol. Exp. Morphol. 66, 57–80 (1981).

    CAS 
    PubMed 

    Google Scholar
     

  • Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Lai, S. L. & Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9, 703–709 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Piper, M. D. & Partridge, L. Protocols to study aging in Drosophila. Methods Mol. Biol. 1478, 291–302 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daniels, R. W. et al. Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J. Neurosci. 24, 10466–10474 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fei, H. et al. Mutation of the Drosophila vesicular GABA transporter disrupts visual figure detection. J. Exp. Biol. 213, 1717–1730 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, D., Veenstra, J. A., Park, J. H. & Taghert, P. H. Mapping peptidergic cells in Drosophila: where DIMM fits in. PLoS ONE 3, e1896 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabrero, P. et al. The Dh gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP. J. Exp. Biol. 205, 3799–3807 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Terhzaz, S., Rosay, P., Goodwin, S. F. & Veenstra, J. A. The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem. Biophys. Res. Commun. 352, 305–310 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, H., Ruan, Z., Long, F., Simpson, J. H. & Myers, E. W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28, 348–353 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link