May 26, 2024

A human-specific modifier of cortical connectivity and circuit function – Nature

  • 1.

    Dennis, M. Y. et al. The evolution and population diversity of human-specific segmental duplications. Nat. Ecol. Evol. 1, 0069 (2017).

    Article 

    Google Scholar
     

  • 2.

    Ponce de León, M. S. et al. The primitive brain of early Homo. Science 372, 165–171 (2021).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Charrier, C. et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149, 923–935 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Fossati, M. et al. SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91, 356–369 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Schmidt, E. R. E., Kupferman, J. V., Stackmann, M. & Polleux, F. The human-specific paralogs SRGAP2B and SRGAP2C differentially modulate SRGAP2A-dependent synaptic development. Sci. Rep. 9, 18692 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Sudmant, P. H. et al. Diversity of human copy number variation and multicopy genes. Science 330, 641–646 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Fortna, A. et al. Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol. 2, E207 (2004).

    Article 

    Google Scholar
     

  • 8.

    Sporny, M. et al. Structural history of human SRGAP2 proteins. Mol. Biol. Evol. 34, 1463–1478 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Benavides-Piccione, R., Ballesteros-Yáñez, I., DeFelipe, J. & Yuste, R. Cortical area and species differences in dendritic spine morphology. J. Neurocytol. 31, 337–346 (2002).

    Article 

    Google Scholar
     

  • 10.

    Elston, G. N., Benavides-Piccione, R. & DeFelipe, J. The pyramidal cell in cognition: a comparative study in human and monkey. J. Neurosci. 21, RC163 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Reardon, T. R. et al. Rabies virus CVS-N2cδG strain enhances retrograde synaptic transfer and neuronal viability. Neuron 89, 711–724 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat. Methods 4, 47–49 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Allen Mouse Common Coordinate Framework. Technical White Paper (Allen Institute for Brain Science, 2015).

  • 14.

    Minamisawa, G., Kwon, S. E., Chevée, M., Brown, S. P. & O’Connor, D. H. A non-canonical feedback circuit for rapid interactions between somatosensory cortices. Cell Rep. 23, 2718–2731.e6 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260–292 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Genescu, I. & Garel, S. Being superficial: a developmental viewpoint on cortical layer 1 wiring. Curr. Opin. Neurobiol. 66, 125–134 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Dana, H. et al. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS ONE 9, e108697 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Goebbels, S. et al. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611–621 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Petersen, C. C. H. Sensorimotor processing in the rodent barrel cortex. Nat. Rev. Neurosci. 20, 533–546 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Guic-Robles, E., Jenkins, W. M. & Bravo, H. Vibrissal roughness discrimination is barrelcortex-dependent. Behav. Brain Res. 48, 145–152 (1992).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Manita, S. et al. A top-down cortical circuit for accurate sensory perception. Neuron 86, 1304–1316 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Park, J., Rodgers, C., Hong, Y. K., Dahan, J. & Bruno, R. Primary somatosensory cortex is essential for texture discrimination but not object detection in mice. IBRO Rep. 6, S550 (2019).

    Article 

    Google Scholar
     

  • 24.

    Geiller, T. et al. Large-scale 3D two-photon imaging of molecularly identified CA1 interneuron dynamics in behaving mice. Neuron 108, 968–983.e9 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Rossi, L. F., Harris, K. D. & Carandini, M. Spatial connectivity matches direction selectivity in visual cortex. Nature 588, 648–652 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Courchet, J. et al. Terminal axon branching is regulated by the LKB1–NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 153, 1510–1525 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Hand, R. & Polleux, F. Neurogenin2 regulates the initial axon guidance of cortical pyramidal neurons projecting medially to the corpus callosum. Neural Dev. 6, 30 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates (Academic, 2001).

  • 29.

    Ma, Y. et al. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150360 (2016).

    Article 

    Google Scholar
     

  • 30.

    Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Peters, A. J., Chen, S. X. & Komiyama, T. Emergence of reproducible spatiotemporal activity during motor learning. Nature 510, 263–267 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Deneux, T. et al. Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo. Nat. Commun. 7, 12190 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Hansel, D. & van Vreeswijk, C. How noise contributes to contrast invariance of orientation tuning in cat visual cortex. J. Neurosci. 22, 5118–5128 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Miller, K. D. & Troyer, T. W. Neural noise can explain expansive, power-law nonlinearities in neural response functions. J. Neurophysiol. 87, 653–659 (2002).

    Article 

    Google Scholar
     

  • 35.

    Priebe, N. J. & Ferster, D. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57, 482–497 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Rubin, D. B., Van Hooser, S. D. & Miller, K. D. The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron 85, 402–417 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Hennequin, G., Ahmadian, Y., Rubin, D. B., Lengyel, M. & Miller, K. D. The dynamical regime of sensory cortex: stable dynamics around a single stimulus-tuned attractor account for patterns of noise variability. Neuron 98, 846–860.e5 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Keller, A. J. et al. A disinhibitory circuit for contextual modulation in primary visual cortex. Neuron 108, 1181–1193.e8 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Source link