May 3, 2024
A LaCl3-based lithium superionic conductor compatible with lithium metal – Nature

A LaCl3-based lithium superionic conductor compatible with lithium metal – Nature

  • Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Manthiram, A., Yu, X. W. & Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

  • Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018).

    Article 

    Google Scholar
     

  • Li, X. N. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liang, J. W. et al. Site-occupation-tuned superionic Li(x)ScCl(3+x) halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 142, 7012–7022 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, J. W. et al. A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries. Adv. Energy Mater. 12, 2103921 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tan, D. H. S., Banerjee, A., Chen, Z. & Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Inaguma, Y. et al. High ionic-conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morosin, B. Crystal structures of anhydrous rare-earth chlorides. J. Chem. Phys. 49, 3007–3012 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Malik, R., Burch, D., Bazant, M. & Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, X. F. et al. Crystal structural framework of lithium super-ionic conductors. Adv. Energy Mater. 9, 1902078 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. T., Han, J. T., Wang, C. A., Xie, H. & Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Park, K. H. et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 533–539 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. Y. et al. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries. ACS Mater. Lett. 3, 930–938 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kwak, H. et al. New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6. Adv. Energy Mater. 11, 2003190 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, L. D. et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy Environ. Sci. 13, 2056–2063 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. Engl. 46, 7778–7781 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, L. D., Assoud, A., Zhang, Q., Wu, X. H. & Nazar, L. F. New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141, 19002–19013 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adeli, P. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. Engl. 58, 8681–8686 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stallworth, P. E., Fontanella, J. J., Wintersgill, M., Scheidler, C. D. & Immel, J. J. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes. J. Power Sources 81–82, 739–747 (1999).

    Article 

    Google Scholar
     

  • Cahill, L. S., Chapman, R. P., Britten, J. F. & Goward, G. R. Li-7 NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)3. J. Phys. Chem. B 110, 7171–7177 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, L. J. M., Heinmaa, I. & Goward, G. R. Study of lithium dynamics in monoclinic Li3Fe2(PO4)3 using Li-6 VT and 2D exchange MAS NMR spectroscopy. Chem. Mater. 22, 769–775 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wang, D. W. et al. Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ion exchanges and their mobility at octahedral/tetrahedral sites. Chem. Mater. 27, 6650–6659 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. M., Wong, L. L. & Adams, S. SoftBV – a software tool for screening the materials genome of inorganic fast ion conductors. Acta Crystallographica B Struct. Sci. Cryst. Eng. Mater. 75, 18–33 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wong, L. L. et al. Bond valence pathway analyzer-an automatic rapid screening tool for fast ion conductors within softBV. Chem. Mater. 33, 625–641 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Riegger, L. M., Schlem, R., Sann, J., Zeier, W. G. & Janek, J. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries. Angew. Chem. Int. Ed. Engl. 60, 6718–6723 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, X. G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, W. et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 138, 12258–12262 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, W. et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 29, 1606042 (2017).

    Article 

    Google Scholar
     

  • Rangasamy, E. et al. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 137, 1384–1387 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. W. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 17, 565–571 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, L. H. & Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Z. et al. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution. ACS Appl. Mater. Interfaces 12, 54662–54670 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K. et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat. Commun. 12, 4410 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. Engl. 58, 8039–8043 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y. Z., He, X. F. & Mo, Y. F. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, Y. C. et al. Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte. Nat. Commun. 11, 1761 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, F. D. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lu, Y. et al. Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv. Funct. Mater. 31, 2009925 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Highly stable halide‐electrolyte‐based all‐solid‐state Li–Se batteries. Adv. Mater. 34, 2200856 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, L. D. et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, S. J. et al. Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Storage Mater. 14, 58–74 (2018).

    Article 

    Google Scholar
     

  • Wang, C. W. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity. J. Mater. Chem. A 10, 4517–4532 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. G. & Furthmüller, J. J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heyd, J. & Scuseria, G. E. Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 121, 1187–1192 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Verlet, L. Computer experiments on classical fluids I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98–103 (1967).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nose, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hoover, W. G. Canonical dynamics – equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • He, X. F., Zhu, Y. Z., Epstein, A. & Mo, Y. F. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. NPJ Comput. Mater. 4, 18 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, Z. Y., Chu, I. H., Deng, Z. & Ong, S. P. Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor. Chem. Mater. 27, 8318–8325 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguezcarvajal, J. Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link