May 6, 2024
A ligand insertion mechanism for cooperative NH3 capture in metal–organic frameworks – Nature

A ligand insertion mechanism for cooperative NH3 capture in metal–organic frameworks – Nature

  • Qing, G. et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 120, 5437–5516 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J. & Chen, P. Catalyst: NH3 as an energy carrier. Chem 3, 709–712 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ye, T.-N. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, K. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Suryanto, B. H. R. et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal. 2, 377–380 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Article 

    Google Scholar
     

  • Malmali, M. et al. Better absorbents for ammonia separation. ACS Sustain. Chem. Eng. 6, 6536–6546 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Smith, C., McCormick, A. V. & Cussler, E. L. Optimizing the conditions for ammonia production using absorption. ACS Sustain. Chem. Eng. 7, 4019–4029 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rieth, A. J., Wright, A. M. & Dincă, M. Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nat. Rev. Mater. 4, 708–725 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kajiwara, T. et al. A systematic study on the stability of porous coordination polymers against ammonia. Chem. Eur. J. 20, 15611–15617 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Godfrey, H. G. W. et al. Ammonia storage by reversible host–guest site exchange in a robust metal–organic framework. Angew. Chem. Int. Ed. 57, 14778–14781 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Removal of ammonia emissions via reversible structural transformation in M(BDC) (M = Cu, Zn, Cd) metal–organic frameworks. Environ. Sci. Technol. 54, 3636–3642 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Environmentally friendly synthesis of flexible MOFs M(NA)2 (M = Zn, Co, Cu, Cd) with large and regenerable ammonia capacity. J. Mater. Chem. A 6, 9922–9929 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y., Li, L., Li, J., Ouyang, K. & Yang, J. Ammonia capture and flexible transformation of M-2 (INA)(M = Cu, Co, Ni, Cd) series materials. J. Hazard. Mater. 306, 340–347 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lyu, P. et al. Ammonia capture via an unconventional reversible guest-induced metal-linker bond dynamics in a highly stable metal–organic framework. Chem. Mater. 33, 6186–6192 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kumagai, H. et al. Metal−organic frameworks from copper dimers with cis– and trans-1,4-cyclohexanedicarboxylate and cis,cis-1,3,5-cyclohexanetricarboxylate. Inorg. Chem. 46, 5949–5956 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Seki, K., Takamizawa, S. & Mori, W. Characterization of microporous copper(II) dicarboxylates (fumarate, terephthalate, and trans-1,4-cyclohexanedicarboxylate) by gas adsorption. Chem. Lett. 30, 122–123 (2001).

    Article 

    Google Scholar
     

  • Kim, D. W. et al. High ammonia uptake of a metal–organic framework adsorbent in a wide pressure range. Angew. Chemie Int. Ed. 59, 22531–22536 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reed, D. A. et al. A spin transition mechanism for cooperative adsorption in metal–organic frameworks. Nature 550, 96–100 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, C. Y. & Aika, K. Ammonia absorption on alkaline earth halides as ammonia separation and storage procedure. Bull. Chem. Soc. Jpn 77, 123–131 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Kang, D. W. et al. A hydrogen‐bonded organic framework (HOF) with type IV NH3 adsorption behavior. Angew. Chem. Int. Ed. 131, 16298–16301 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y. et al. Antenna-protected metal–organic squares for water/ammonia uptake with excellent stability and regenerability. ACS Sustain. Chem. Eng. 5, 5082–5089 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Chen, L., Wang, H. L. & Liao, D. L. The adsorption refrigeration characteristics of alkaline-earth metal chlorides and its composite adsorbents. Renew. Energy 34, 1016–1023 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. W., Wang, R. Z., Lu, Z. S., Chen, C. J. & Wu, J. Y. Comparison of the adsorption performance of compound adsorbent in a refrigeration cycle with and without mass recovery. Chem. Eng. Sci. 61, 3761–3770 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Rieth, A. J., Tulchinsky, Y. & Dincă, M. High and reversible ammonia uptake in mesoporous azolate metal–organic frameworks with open Mn, Co, and Ni sites. J. Am. Chem. Soc. 138, 9401–9404 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Katz, M. J. et al. High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalt. Trans. 45, 4150–4153 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hiraide, S., Tanaka, H., Ishikawa, N. & Miyahara, M. T. Intrinsic thermal management capabilities of flexible metal–organic frameworks for carbon dioxide separation and capture. ACS Appl. Mater. Interfaces 9, 41066–41077 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Feldmann, W. K., Esterhuysen, C. & Barbour, L. J. Pressure-gradient sorption calorimetry of flexible porous materials: implications for intrinsic thermal management. ChemSusChem 13, 5220–5223 (2020).

    Article 
    CAS 

    Google Scholar
     

  • An, G. et al. Metal–organic frameworks for ammonia‐based thermal energy storage. Small 17, 2102689 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. The potential use of metal–organic framework/ammonia working pairs in adsorption chillers. J. Mater. Chem. A 9, 6188–6195 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kale, M. J. et al. Optimizing ammonia separation via reactive absorption for sustainable ammonia synthesis. ACS Appl. Energy Mater. 3, 2576–2584 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hrtus, D. J., Nowrin, F. H., Lomas, A., Fotsa, Y. & Malmali, M. Achieving+ 95% ammonia purity by optimizing the absorption and desorption conditions of supported metal halides. ACS Sustain. Chem. Eng. 10, 204–212 (2021).

    Article 

    Google Scholar
     

  • Irving, H. & Williams, R. J. P. The stability of transition-metal complexes. J. Chem. Soc. 3192–3210 (1953).

  • Paoletti, P. Formation of metal complexes with ethylenediamine: a critical survey of equilibrium constants, enthalpy and entropy values. Pure Appl. Chem. 56, 491–522 (1984).

    Article 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, 2016).

  • Jiang, L. & Roskilly, A. P. Thermal conductivity, permeability and reaction characteristic enhancement of ammonia solid sorbents: a review. Int. J. Heat Mass Transf. 130, 1206–1225 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rigaku Oxford Diffraction CrysAlisPro Software System, version 1.171.39.7a (Rigaku, 2015).

  • Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C 71, 3−8 (2015).

  • Sheldrick, G. M. SHELXS (Univ. Göttingen, 2014).

  • Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112−122 (2008).

  • Sheldrick, G. M. SHELXL (Univ. Göttingen, 2014).

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339−341 (2009).

  • Carson, C. et al. Structure solution from powder diffraction of copper 1,4-benzenedicarboxylate. Eur. J. Inorg. Chem. 2014, 2140−2145 (2014).

  • Source link