May 5, 2024
A long-period radio transient active for three decades – Nature

A long-period radio transient active for three decades – Nature

  • Caleb, M. et al. Discovery of a radio-emitting neutron star with an ultra-long spin period of 76 s. Nat. Astron. 6, 828–836 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurley-Walker, N. et al. A radio transient with unusually slow periodic emission. Nature 601, 526–530 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hyman, S. D. et al. A powerful bursting radio source towards the Galactic Centre. Nature 434, 50–52 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ekers, R. D. & Moffet, A. T. Polarization of pulsating radio sources. Astrophys. J. 158, L1 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Rea, N. et al. Constraining the nature of the 18 min periodic radio transient GLEAM-X J162759.5-523504.3 via multiwavelength observations and magneto-thermal simulations. Astrophys. J. 940, 72 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ruderman, M. A. & Sutherland, P. G. Theory of pulsars: polar gaps, sparks, and coherent microwave radiation. Astrophys. J. 196, 51–72 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, K. & Ruderman, M. Pulsar death lines and death valley. Astrophys. J. 402, 264 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, B., Harding, A. K. & Muslimov, A. G. Radio pulsar death line revisited: is PSR J2144–3933 anomalous? Astrophys. J. Lett. 531, L135–L138 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia telescope national facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Olausen, S. A. & Kaspi, V. M. The McGill magnetar catalog. Astrophys. J. Suppl. 212, 6 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Coti Zelati, F., Rea, N., Pons, J. A., Campana, S. & Esposito, P. Systematic study of magnetar outbursts. Mon. Not. R. Astron. Soc. 474, 961–1017 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Levin, L. et al. A radio-loud magnetar in X-ray quiescence. Astrophys. J. Lett. 721, L33–L37 (2010).

    Article 
    ADS 

    Google Scholar
     

  • The CHIME/FRB Collaboration. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 587, 54–58 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Katz, J. I. GLEAM-X J162759.5–523504.3 as a white dwarf pulsar. Astrophys. Space Sci. 367, 108 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Marsh, T. R. et al. A radio-pulsing white dwarf binary star. Nature 537, 374–377 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Loeb, A. & Maoz, D. A hot subdwarf model for the 18.18 minutes pulsar GLEAM-X. Res. Not. Am. Astron. Soc. 6, 27 (2022).

    ADS 

    Google Scholar
     

  • Vedantham, H. K. et al. Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction. Nat. Astron. 4, 577–583 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Callingham, J. R. et al. The population of M dwarfs observed at low radio frequencies. Nat. Astron. 5, 1233–1239 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Vedantham, H. K. et al. Polarised radio pulsations from a new T dwarf binary. Preprint at https://arxiv.org/abs/2301.01003 (2023).

  • De Luca, A., Caraveo, P. A., Mereghetti, S., Tiengo, A. & Bignami, G. F. A long-period, violently variable X-ray source in a young supernova remnant. Science 313, 814–817 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rea, N. et al. Magnetar-like activity from the central compact object in the SNR RCW103. Astrophys. J. Lett. 828, L13 (2016).

    Article 
    ADS 

    Google Scholar
     

  • D’Aì, A. et al. Evidence for the magnetar nature of 1E 161348–5055 in RCW 103. Mon. Not. R. Astron. Soc. 463, 2394–2404 (2016).

    ADS 

    Google Scholar
     

  • Tingay, S. J. et al. The Murchison widefield array: the square kilometre array precursor at low radio frequencies. Publ. Astron. Soc. Aust. 30, e007 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wayth, R. B. et al. The phase II Murchison widefield array: design overview. Publ. Astron. Soc. Aust. 35, e033 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hurley-Walker, N. et al. GaLactic and Extragalactic All-sky Murchison Widefield Array survey eXtended (GLEAM-X) I: survey description and initial data release. Publ. Astron. Soc. Aust. 39, e035 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sutinjo, A. et al. Understanding instrumental Stokes leakage in Murchison Widefield Array polarimetry. Radio Sci. 50, 52–65 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hobbs, G. et al. An ultra-wide bandwidth (704 to 4 032 MHz) receiver for the Parkes radio telescope. Publ. Astron. Soc. Aust. 37, e012 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Price, D. C. et al. The Breakthrough Listen search for intelligent life: wide-bandwidth digital instrumentation for the CSIRO Parkes 64-m telescope. Publ. Astron. Soc. Aust. 35, e041 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lebofsky, M. et al. The Breakthrough Listen search for intelligent life: public data, formats, reduction, and archiving. Publ. Astron. Soc. Pac. 131, 124505 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Price, D. C. et al. Expanded capability of the Breakthrough Listen Parkes Data Recorder for observations with the UWL receiver. Res. Not. Am. Astron. Soc. 5, 114 (2021).

    ADS 

    Google Scholar
     

  • Winkel, B., Kraus, A. & Bach, U. Unbiased flux calibration methods for spectral-line radio observations. Astron. Astrophys. 540, A140 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Reynolds, J. A revised flux scale for the AT Compact Array. ATNF Technical Memos, AT/39.3/040 (1994).

  • Jonas, J. & MeerKAT Team. in Proc. MeerKAT Science: On the Pathway to the SKA, 1 (2016).

  • Offringa, A. R., van de Gronde, J. J. & Roerdink, J. B. T. M. A morphological algorithm for improving radio-frequency interference detection. Astron. Astrophys. 539, A95 (2012).

    Article 

    Google Scholar
     

  • Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Men, Y. TransientX. https://github.com/ypmen/TransientX.

  • Serylak, M. et al. The thousand-pulsar-array programme on MeerKAT IV: polarization properties of young, energetic pulsars. Mon. Not. R. Astron. Soc. 505, 4483–4495 (2021).

    Article 
    ADS 

    Google Scholar
     

  • van Straten, W., Demorest, P. & Oslowski, S. Pulsar data analysis with PSRCHIVE. Astron. Res. Technol. 9, 237–256 (2012).


    Google Scholar
     

  • Seymour, A., Michilli, D. & Pleunis, Z. DM_phase: algorithm for correcting dispersion of radio signals. Astrophysics Source Code Library, record ascl:1910.004. https://www.ascl.net/1910.004 (2019).

  • Hotan, A. W. et al. Australian square kilometre array pathfinder: I. system description. Publ. Astron. Soc. Aust. 38, e009 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Murphy, T. et al. VAST: an ASKAP survey for variables and slow transients. Publ. Astron. Soc. Aust. 30, e006 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Whiting, M., Voronkov, M., Mitchell, D. & ASKAP Team. in Astronomical Data Analysis Software and Systems XXV, ASP Conference Series Vol. 512 (eds Lorente, N. P. F., Shortridge, K. & Wayth, R.) 431–434 (2017).

  • Chapman, J. M. et al. in Astronomical Data Analysis Software and Systems XXV, ASP Conference Series Vol. 512 (eds Lorente, N. P. F., Shortridge, K. & Wayth, R.) 73–76 (2017).

  • Huynh, M., Dempsey, J., Whiting, M. T. & Ophel, M. in Astronomical Data Analysis Software and Systems XXVII, Astronomical Society of the Pacific Conference Series Vol. 522 (eds Ballester, P., Ibsen, J., Solar, M. & Shortridge, K.) 263 (2020).

  • Purcell, C. R., Van Eck, C. L., West, J., Sun, X. H. & Gaensler, B. M. RM-Tools: rotation measure (RM) synthesis and Stokes QU-fitting. Astrophysics Source Code Library, record ascl:2005.003. https://ascl.net/2005.003 (2020).

  • McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI, Astronomical Society of the Pacific Conference Series Vol. 376 (eds Shaw, R. A., Hill, F. & Bell, D. J.) 127 (2007).

  • Polisensky, E. et al. Exploring the transient radio sky with VLITE: early results. Astrophys. J. 832, 60 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Clarke, T. E. et al. in Ground-based and Airborne Telescopes VI, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 9906 (eds Hall, H. J., Gilmozzi, R. & Marshall, H. K.) 99065B (2016).

  • Polisensky, E., Richards, E., Clarke, T., Peters, W. & Kassim, N. in Astronomical Data Analysis Software and Systems XXVII, Astronomical Society of the Pacific Conference Series Vol. 523 (eds Teuben, P. J., Pound, M. W., Thomas, B. A. & Warner, E. M.) 441 (2019).

  • van Moorsel, G., Kemball, A. & Greisen, E. in Astronomical Data Analysis Software and Systems V, Astronomical Society of the Pacific Conference Series Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 37 (1996).

  • de Gasperin, F., Intema, H. T. & Frail, D. A. A radio spectral index map and catalogue at 147–1400 MHz covering 80 per cent of the sky. Mon. Not. R. Astron. Soc. 474, 5008–5022 (2018).

    ADS 

    Google Scholar
     

  • Strüder, L. et al. The European photon imaging camera on XMM-Newton: the pn-CCD camera. Astron. Astrophys. 365, L18–L26 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Turner, M. J. L. et al. The European photon imaging camera on XMM-Newton: the MOS cameras. Astron. Astrophys. 365, L27–L35 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Gabriel, C. et al. in Proc. Astronomical Data Analysis Software and Systems (ADASS) XIII Vol. 314, 759 (2004).

  • Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our Galaxy. Mon. Not. R. Astron. Soc. 431, 394–404 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Mason, K. O. et al. The XMM-Newton optical/UV monitor telescope. Astron. Astrophys. 365, L36–L44 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Garzón, F. et al. EMIR, the near-infrared camera and multi-object spectrograph for the GTC. Astron. Astrophys. 667, A107 (2022).

    Article 

    Google Scholar
     

  • Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Bilir, S. et al. Luminosity–colour relations for thin-disc main-sequence stars. Mon. Not. R. Astron. Soc. 390, 1569–1576 (2008).

    ADS 

    Google Scholar
     

  • Johnston, S. & Kerr, M. Polarimetry of 600 pulsars from observations at 1.4 GHz with the Parkes radio telescope. Mon. Not. R. Astron. Soc. 474, 4629–4636 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Cordes, J. M. Pulsar microstructure: periodicities, polarization and probes of pulsar magnetospheres. Aust. J. Phys. 32, 9–24 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Mitra, D., Arjunwadkar, M. & Rankin, J. M. Polarized quasiperiodic structures in pulsar radio emission reflect temporal modulations of non-stationary plasma flow. Astrophys. J. 806, 236 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Luo, J. et al. PINT: a modern software package for pulsar timing. Astrophys. J. 911, 45 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Erkut, M. H. Radio luminosity of GLEAM-X J162759.5–523504.3: does it really exceed the spin-down power of the pulsar? Mon. Not. R. Astron. Soc. 514, L41–L45 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kijak, J. & Gil, J. Radio emission altitude in pulsars. Astron. Astrophys. 397, 969–972 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Gil, J. A., Kijak, J. & Seiradakis, J. H. On the two-dimensional structure of pulsar beams. Astron. Astrophys. 272, 268–276 (1993).

    ADS 

    Google Scholar
     

  • Rankin, J. M. Toward an empirical theory of pulsar emission. VI – The geometry of the conal emission region. Astrophys. J. 405, 285–297 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Cordes, J. M. in Milky Way Surveys: The Structure and Evolution of our Galaxy, Astronomical Society of the Pacific Conference Series Vol. 317 (eds Clemens, D., Shah, R. & Brainerd, T.) 211 (2004).

  • Lattimer, J. M. Neutron star mass and radius measurements. Universe 5, 159 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Riley, T. E. et al. A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887, L21 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link