May 25, 2024
A metal-poor star with abundances from a pair-instability supernova – Nature

A metal-poor star with abundances from a pair-instability supernova – Nature

  • Bromm, V., Coppi, P. S. & Larson, R. B. Forming the first stars in the universe: the fragmentation of primordial gas. Astrophys. J. Lett. 527, L5–L8 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Abel, T., Bryan, G. L. & Norman, M. L. The formation and fragmentation of primordial molecular clouds. Astrophys. J. 540, 39–44 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Susa, H., Hasegawa, K. & Tominaga, N. The mass spectrum of the first stars. Astrophys. J. 792, 32 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hirano, S., Hosokawa, T., Yoshida, N., Omukai, K. & Yorke, H. W. Primordial star formation under the influence of far ultraviolet radiation: 1540 cosmological haloes and the stellar mass distribution. Mon. Not. R. Astron. Soc. 448, 568–587 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heger, A. & Woosley, S. E. The nucleosynthetic signature of population III. Astrophys. J. 567, 532–543 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yong, D. et al. The most metal-poor stars. II. Chemical abundances of 190 metal-poor stars including 10 new stars with [Fe/H] ≤ −3.5. Astrophys. J. 762, 26 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ishigaki, M. N., Tominaga, N., Kobayashi, C. & Nomoto, K. The initial mass function of the first stars inferred from extremely metal-poor stars. Astrophys. J. 857, 46 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, G. et al. Stellar abundance and Galactic chemical evolution through LAMOST spectroscopic survey. Chin. J. Astron. Astrophys. 6, 265–280 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, G., Zhao, Y.-H., Chu, Y.-Q., Jing, Y.-P. & Deng, L.-C. LAMOST spectral survey — an overview. Res. Astron. Astrophys. 12, 723–734 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Aoki, W. et al. Four-hundred very metal-poor stars studied with LAMOST and Subaru. I. Survey design, follow-up program, and binary frequency. Astrophys. J. 931, 146 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Li, H. et al. Four-hundred very metal-poor stars studied with LAMOST and Subaru. II. Elemental abundances. Astrophys. J. 931, 147 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Castelli, F., Gratton, R. G. & Kurucz, R. L. Notes on the convection in the ATLAS9 model atmospheres. Astron. Astrophys. 318, 841–869 (1997).

    ADS 

    Google Scholar
     

  • Sneden, C., Cowan, J. J. & Gallino, R. Neutron-capture elements in the early galaxy. Annu. Rev. Astron. Astrophys. 46, 241–288 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tolstoy, E., Hill, V. & Tosi, M. Star-formation histories, abundances, and kinematics of dwarf galaxies in the local group. Annu. Rev. Astron. Astrophys. 47, 371–425 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aoki, W., Tominaga, N., Beers, T. C., Honda, S. & Lee, Y. S. A chemical signature of first-generation very massive stars. Science 345, 912–915 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivans, I. I. et al. Chemical substructure in the Milky Way halo: a new population of old stars. Astrophys. J. 592, 906–934 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xing, Q.-F. et al. Evidence for the accretion origin of halo stars with an extreme r-process enhancement. Nat. Astron. 3, 631–635 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Heger, A. & Woosley, S. E. Nucleosynthesis and evolution of massive metal-free stars. Astrophys. J. 724, 341–373 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ohshiro, Y. et al. Discovery of a highly neutronized ejecta clump in the type Ia supernova remnant 3C 397. Astrophys. J. Lett. 913, L34 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weaver, T. A., Zimmerman, G. B. & Woosley, S. E. Presupernova evolution of massive stars. Astrophys. J. 225, 1021–1029 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heger, A., Langer, N. & Woosley, S. E. Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure. Astrophys. J. 528, 368–396 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nomoto, K., Kobayashi, C. & Tominaga, N. Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Karlsson, T., Johnson, J. L. & Bromm, V. Uncovering the chemical signature of the first stars in the universe. Astrophys. J. 679, 6–16 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • de Bennassuti, M., Salvadori, S., Schneider, R., Valiante, R. & Omukai, K. Limits on Population III star formation with the most iron-poor stars. Mon. Not. R. Astron. Soc. 465, 926–940 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Salvadori, S. et al. Probing the existence of very massive first stars. Mon. Not. R. Astron. Soc. 487, 4261–4284 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tominaga, N., Iwamoto, N. & Nomoto, K. Abundance profiling of extremely metal-poor stars and supernova properties in the early universe. Astrophys. J. 785, 98 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Yoshii, Y. et al. Potential signature of Population III pair-instability supernova ejecta in the BLR gas of the most distant quasar at z = 7.54. Astrophys. J. 937, 61 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Huang, Y. et al. Beyond spectroscopy. I. Metallicities, distances, and age estimates for over 20 million stars from SMSS DR2 and Gaia EDR3. Astrophys. J. 925, 164 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Noguchi, K. et al. High dispersion spectrograph (HDS) for the Subaru telescope. Publ. Astron. Soc. Jpn. 54, 855–864 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Aoki, W. et al. High-resolution spectroscopy of extremely metal-poor stars from SDSS/SEGUE. I. Atmospheric parameters and chemical compositions. Astron. J. 145, 13 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Mashonkina, L. et al. The Hamburg/ESO R-process enhanced star survey (HERES). V. Detailed abundance analysis of the r-process enhanced star HE 2327-5642. Astron. Astrophys. 516, A46 (2010).

    Article 

    Google Scholar
     

  • Sneden, C. The nitrogen abundance of the very metal-poor star HD 122563. Astrophys. J. 184, 839–849 (1973).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Casagrande, L., Ramírez, I., Meléndez, J., Bessell, M. & Asplund, M. An absolutely calibrated Teff scale from the infrared flux method. Dwarfs and subgiants. Astron. Astrophys. 512, A54 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Lind, K., Bergemann, M. & Asplund, M. Non-LTE line formation of Fe in late-type stars — II. 1D spectroscopic stellar parameters. Mon. Not. R. Astron. Soc. 427, 50–60 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, G. et al. Systematic non-LTE study of the −2.6 ≤ [Fe/H] ≤ 0.2 F and G dwarfs in the solar neighborhood. II. Abundance patterns from Li to Eu. Astrophys. J. 833, 225 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Bergemann, M. & Cescutti, G. Chromium: NLTE abundances in metal-poor stars and nucleosynthesis in the Galaxy. Astron. Astrophys. 522, A9 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Bergemann, M. et al. Observational constraints on the origin of the elements. I. 3D NLTE formation of Mn lines in late-type stars. Astron. Astrophys. 631, A80 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chieffi, A. & Limongi, M. Explosive yields of massive stars from Z = 0 to Z = Z. Astrophys. J. 608, 405–410 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chieffi, A. & Limongi, M. Pre-supernova evolution of rotating solar metallicity stars in the mass range 13–120 M and their explosive yields. Astrophys. J. 764, 21 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Grimmett, J. J., Heger, A., Karakas, A. I. & Müller, B. Nucleosynthesis in primordial hypernovae. Mon. Not. R. Astron. Soc. 479, 495–516 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Limongi, M. & Chieffi, A. Presupernova evolution and explosive nucleosynthesis of zero metal massive stars. Astrophys. J. Suppl. Ser. 199, 38 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Limongi, M. & Chieffi, A. Presupernova evolution and explosive nucleosynthesis of rotating massive stars in the metallicity range −3 ≤ [Fe/H] ≤ 0. Astrophys. J. Suppl. Ser. 237, 13 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Prantzos, N., Abia, C., Limongi, M., Chieffi, A. & Cristallo, S. Chemical evolution with rotating massive star yields – I. The solar neighbourhood and the s-process elements. Mon. Not. R. Astron. Soc. 476, 3432–3459 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tominaga, N., Umeda, H. & Nomoto, K. Supernova nucleosynthesis in Population III 13-50 M stars and abundance patterns of extremely metal-poor stars. Astrophys. J. 660, 516–540 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Iwamoto, K. et al. Nucleosynthesis in Chandrasekhar mass models for type IA supernovae and constraints on progenitor systems and burning-front propagation. Astrophys. J. Suppl. Ser. 125, 439–462 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lach, F. et al. Nucleosynthesis imprints from different Type Ia supernova explosion scenarios and implications for galactic chemical evolution. Astron. Astrophys. 644, A118 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kobayashi, C., Ishigaki, M. N., Tominaga, N. & Nomoto, K. The origin of low [α/Fe] ratios in extremely metal-poor stars. Astrophys. J. Lett. 785, L5 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Badenes, C., Bravo, E., Borkowski, K. J. & Domínguez, I. Thermal X-ray emission from shocked ejecta in Type Ia supernova remnants: prospects for explosion mechanism identification. Astrophys. J. 593, 358–369 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McWilliam, A., Piro, A. L., Badenes, C. & Bravo, E. Evidence for a sub-Chandrasekhar-mass Type Ia supernova in the Ursa Minor dwarf galaxy. Astrophys. J. 857, 97 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Nomoto, K., Kobayashi, C. & Tominaga, N. Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link