May 7, 2024

A naturally inspired antibiotic to target multidrug-resistant pathogens – Nature

  • 1.

    Ventola, C. L. The antibiotic resistance crisis: part 1: causes and threats. P. T. 40, 277–283 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Deveson Lucas, D. et al. Emergence of high-level colistin resistance in an Acinetobacter baumannii clinical isolate mediated by inactivation of the global regulator H-NS. Antimicrob. Agents Chemother. 62, e02442-17 (2018).

    Article 

    Google Scholar
     

  • 4.

    Aitolo, G. L., Adeyemi, O. S., Afolabi, B. L. & Owolabi, A. O. Neisseria gonorrhoeae antimicrobial resistance: past to present to future. Curr. Microbiol. 78, 867–878 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    Article 

    Google Scholar
     

  • 6.

    Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Biswas, S., Brunel, J. M., Dubus, J. C., Reynaud-Gaubert, M. & Rolain, J. M. Colistin: an update on the antibiotic of the 21st century. Expert Rev. Anti Infect. Ther. 10, 917–934 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    Article 

    Google Scholar
     

  • 9.

    Jeannot, K., Bolard, A. & Plesiat, P. Resistance to polymyxins in Gram-negative organisms. Int. J. Antimicrob. Agents 49, 526–535 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Liu, Y. Y. et al. Structural modification of lipopolysaccharide conferred by mcr-1 in Gram-negative ESKAPE pathogens. Antimicrob. Agents Chemother. 61, e00580-17 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Schwarz, S. & Johnson, A. P. Transferable resistance to colistin: a new but old threat. J. Antimicrob. Chemother. 71, 2066–2070 (2016).

    Article 

    Google Scholar
     

  • 12.

    Hameed, F. et al. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: first report from Pakistan. Rev. Soc. Bras. Med. Trop. 52, e20190237 (2019).

    Article 

    Google Scholar
     

  • 13.

    Tian, G. B. et al. MCR-1-producing Klebsiella pneumoniae outbreak in China. Lancet Infect. Dis. 17, 577 (2017).

    Article 

    Google Scholar
     

  • 14.

    Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Sussmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis – principles and prospects. Angew. Chem. Int. Ed. Engl. 56, 3770–3821 (2017).

    Article 

    Google Scholar
     

  • 16.

    Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Rabanal, F. & Cajal, Y. Recent advances and perspectives in the design and development of polymyxins. Nat. Prod. Rep. 34, 886–908 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Li, J., Nation, R. & Kaye, K. (eds) Polymyxin Antibiotics: From Laboratory Bench to Bedside Preface 1145, V–VI (Springer, 2019).

  • 19.

    Tomm, H. A., Ucciferri, L. & Ross, A. C. Advances in microbial culturing conditions to activate silent biosynthetic gene clusters for novel metabolite production. J. Ind. Microbiol. Biotechnol. 46, 1381–1400 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Chu, J. et al. Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat. Chem. Biol. 12, 1004–1006 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Chu, J., Vila-Farres, X. & Brady, S. F. Bioactive synthetic-bioinformatic natural product cyclic peptides inspired by nonribosomal peptide synthetase gene clusters from the human microbiome. J. Am. Chem. Soc. 141, 15737–15741 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Chu, J. et al. Synthetic-bioinformatic natural product antibiotics with diverse modes of action. J. Am. Chem. Soc. 142, 14158–14168 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Kang, K. N. et al. Colistin heteroresistance in Enterobacter cloacae is regulated by PhoPQ-dependent 4-amino-4-deoxy-l-arabinose addition to lipid A. Mol. Microbiol. 111, 1604–1616 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    McClerren, A. L. et al. A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin. Biochemistry 44, 16574–16583 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Moffatt, J. H. et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 54, 4971–4977 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Wei, J.-R. et al. LpxK is essential for growth of Acinetobacter baumannii ATCC 19606: relationship to toxic accumulation of lipid A pathway intermediates. mSphere 2, e00199–00117 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Richie, D. L. et al. Toxic accumulation of LPS pathway intermediates underlies the requirement of LpxH for growth of Acinetobacter baumannii ATCC 19606. PLoS ONE 11, e0160918 (2016).

    Article 

    Google Scholar
     

  • 28.

    US Department of Health and Human Services. Antibiotic Resistance Threats in the United States; https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (2019).

  • 29.

    Ling, Z. et al. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. J. Antimicrob. Chemother. 75, 3087–3095 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Sakura, N. et al. The contribution of the N-terminal structure of polymyxin B peptides to antimicrobial and lipopolysaccharide binding activity. Bull. Chem. Soc. Jpn 77, 1915–1924 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Tsubery, H., Ofek, I., Cohen, S. & Fridkin, M. N-terminal modifications of polymyxin B nonapeptide and their effect on antibacterial activity. Peptides 22, 1675–1681 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Lutgring, J. D. et al. FDA-CDC antimicrobial resistance isolate bank: a publicly available resource to support research, development, and regulatory requirements. J. Clin. Microbiol. 56, e01415-17 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Devarajan, P. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease. Scand. J. Clin. Lab. Invest. Suppl. 241, 89–94 (2008).

    Article 

    Google Scholar
     

  • 34.

    Wang, J., Ishfaq, M., Fan, Q., Chen, C. & Li, J. 7-hydroxycoumarin attenuates colistin-induced kidney injury in mice through the decreased level of histone deacetylase 1 and the activation of Nrf2 signaling pathway. Front. Pharmacol. 11, 1146 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am. J. Kidney Dis. 52, 595–605 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Blin, K. et al. The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 47, D625–D630 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Testing, E. C. O. A. S. Recommendations for MIC Determination of Colistin (Polymyxin E) as Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group (EUCAST, 2016).

  • 39.

    Wikler, M. A. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. CLSI document M07-A7 (2006).

  • 40.

    Bojkovic, J. et al. Characterization of an Acinetobacter baumannii lptD deletion strain: permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. J. Bacteriol. 198, 731–741 (2015).

    Article 

    Google Scholar
     

  • 41.

    Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. & Mitchell, J. B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936–942 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Source link