May 30, 2024
A phosphate-sensing organelle regulates phosphate and tissue homeostasis – Nature

A phosphate-sensing organelle regulates phosphate and tissue homeostasis – Nature

  • Qi, W., Baldwin, S. A., Muench, S. P. & Baker, A. Pi sensing and signalling: from prokaryotic to eukaryotic cells. Biochem. Soc. Trans. 44, 766–773 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, S., Versaw, W. K. & Garcia, L. R. Imaging cellular inorganic phosphate in Caenorhabditis elegans using a genetically encoded FRET-based biosensor. PLoS ONE 10, e0141128 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, J. & Pallas, D. C. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int. J. Biochem. Cell Biol. 47, 118–148 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, M. R. & Kornberg, A. Inorganic polyphosphate in the origin and survival of species. Proc. Natl Acad. Sci. USA 101, 16085–16087 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Liu, T. Y. et al. Identification of plant vacuolar transporters mediating phosphate storage. Nat. Commun. 7, 11095 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Rao, N. N., Gomez-Garcia, M. R. & Kornberg, A. Inorganic polyphosphate: essential for growth and survival. Annu. Rev. Biochem. 78, 605–647 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tjellstrom, H., Andersson, M. X., Larsson, K. E. & Sandelius, A. S. Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. Plant Cell Environ. 31, 1388–1398 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Bergwitz, C. et al. Roles of major facilitator superfamily transporters in phosphate response in Drosophila. PLoS ONE 7, e31730 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Micchelli, C. & Perrimon, N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475–479 (2006).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Amcheslavsky, A., Jiang, J. & Ip, Y. T. Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4, 49–61 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C. et al. An in vivo RNAi screen uncovers the role of AdoR signaling and adenosine deaminase in controlling intestinal stem cell activity. Proc. Natl Acad. Sci. USA 117, 464–471 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wild, R. et al. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352, 986–990 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wege, S. et al. The EXS domain of PHO1 participates in the response of shoots to phosphate deficiency via a root-to-shoot signal. Plant Physiol. 170, 385–400 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hung, R. J. et al. A cell atlas of the adult Drosophila midgut. Proc. Natl Acad. Sci. USA 117, 1514–1523 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Zeng, X., Chauhan, C. & Hou, S. X. Characterization of midgut stem cell- and enteroblast-specific Gal4 lines in drosophila. Genesis 48, 607–611 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arpat, A. B. et al. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. Plant J. 71, 479–491 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, C., Ericsson, M. & Perrimon, N. Understanding cellular signaling and systems biology with precision: a perspective from ultrastructure and organelle studies in the Drosophila midgut. Curr. Opin. Syst. Biol. 11, 24–31 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigues, F. F. & Harris, T. J. C. Key roles of Arf small G proteins and biosynthetic trafficking for animal development. Small GTPases 10, 403–410 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsarouhas, V. et al. Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Dev. Cell 13, 214–225 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilfling, F. et al. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife 3, e01607 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayaram, S. A. et al. COPI vesicle transport is a common requirement for tube expansion in Drosophila. PLoS ONE 3, e1964 (2008).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Parkinson, W. M. et al. Synaptic roles for phosphomannomutase type 2 in a new Drosophila congenital disorder of glycosylation disease model. Dis. Model. Mech. 9, 513–527 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ladyzhets, S. et al. Self-limiting stem-cell niche signaling through degradation of a stem-cell receptor. PLoS Biol. 18, e3001003 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koehler, C. L., Perkins, G. A., Ellisman, M. H. & Jones, D. L. Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging. J. Cell Biol. 216, 2315–2327 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C. et al. The septate junction protein Tsp2A restricts intestinal stem cell activity via endocytic regulation of aPKC and Hippo signaling. Cell Rep. 26, 670–688.e6 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corrigan, L. et al. BMP-regulated exosomes from Drosophila male reproductive glands reprogram female behavior. J. Cell Biol. 206, 671–688 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Giovannini, D., Touhami, J., Charnet, P., Sitbon, M. & Battini, J. L. Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep. 3, 1866–1873 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, B. et al. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nat. Genet. 53, 906–915 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balis, J. U. & Conen, P. E. The Role of Alveolar Inclusion Bodies in the Developing Lung. Lab. Invest. 13, 1215–1229 (1964).

    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, H. & Kurosumi, K. Lamellar granules and keratohyalin granules in the epidermal keratinocytes, with special reference to their origin, fate and function. J. Electron Microsc. (Tokyo) 21, 285–292 (1972).

    CAS 
    PubMed 

    Google Scholar
     

  • Osanai, K. et al. Pulmonary surfactant transport in alveolar type II cells. Respirology 11 (Suppl. 1), S70–S73 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Tarutani, M. et al. GPHR-dependent functions of the Golgi apparatus are essential for the formation of lamellar granules and the skin barrier. J. Invest. Dermatol. 132, 2019–2025 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitz, G. & Muller, G. Structure and function of lamellar bodies, lipid-protein complexes involved in storage and secretion of cellular lipids. J. Lipid Res. 32, 1539–1570 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dillard, K. J. et al. Recessive missense LAMP3 variant associated with defect in lamellar body biogenesis and fatal neonatal interstitial lung disease in dogs. PLoS Genet. 16, e1008651 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheong, N. et al. ABCA3 is critical for lamellar body biogenesis in vivo. J. Biol. Chem. 282, 23811–23817 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilder, H., Haschemeyer, R. H., Fairclough, G. F. Jr & Mynarcik, D. C. Isolation and characterization of lamellar body material from rat lung homogenates by continuous linear sucrose gradients. J. Lipid Res. 22, 1277–1285 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ridsdale, R., Na, C. L., Xu, Y., Greis, K. D. & Weaver, T. Comparative proteomic analysis of lung lamellar bodies and lysosome-related organelles. PLoS ONE 6, e16482 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wang, P. et al. Proteomic analysis of lamellar bodies isolated from rat lungs. BMC Cell Biol. 9, 34 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raymond, A. A. et al. Lamellar bodies of human epidermis: proteomics characterization by high throughput mass spectrometry and possible involvement of CLIP-170 in their trafficking/secretion. Mol. Cell Proteomics 7, 2151–2175 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chintagari, N. R. et al. Effect of cholesterol depletion on exocytosis of alveolar type II cells. Am. J. Respir. Cell Mol. Biol. 34, 677–687 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvalho, M. et al. Effects of diet and development on the Drosophila lipidome. Mol. Syst. Biol. 8, 600 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, X. L. et al. Biochemical membrane lipidomics during Drosophila development. Dev. Cell 24, 98–111 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grayson, S. et al. Lamellar body-enriched fractions from neonatal mice: preparative techniques and partial characterization. J. Invest. Dermatol. 85, 289–294 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Jiang, H. et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137, 1343–1355 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin-Blanco, E. et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 12, 557–570 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, P. H. et al. Damage sensing by a Nox-Ask1-MKK3-p38 signaling pathway mediates regeneration in the adult Drosophila midgut. Nat. Commun. 10, 4365 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Eichhorn, P. J., Creyghton, M. P., Wilhelmsen, K., van Dam, H. & Bernards, R. A RNA interference screen identifies the protein phosphatase 2A subunit PR55gamma as a stress-sensitive inhibitor of c-SRC. PLoS Genet. 3, e218 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michigami, T., Kawai, M., Yamazaki, M. & Ozono, K. Phosphate as a signaling molecule and its sensing mechanism. Physiol. Rev. 98, 2317–2348 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hay, B. A., Wolff, T. & Rubin, G. M. Expression of baculovirus P35 prevents cell death in Drosophila. Development 120, 2121–2129 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cook, M. S. et al. Neutral competition for Drosophila follicle and cyst stem cell niches requires vesicle trafficking genes. Genetics 206, 1417–1428 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, D. M., Rodrigues, F. F., Yu, C. G., Swan, M. & Harris, T. J. PH domain-Arf G protein interactions localize the Arf-GEF Steppke for cleavage furrow regulation in Drosophila. PLoS ONE 10, e0142562 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ueoka, I. et al. Novel genetic link between the ATP-binding cassette subfamily A gene and hippo gene in Drosophila. Exp. Cell. Res. 386, 111733 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moulton, M. J. et al. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer’s disease-associated genes. Proc. Natl Acad. Sci. USA 118, e2112095118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, H. & Edgar, B. A. EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136, 483–493 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thibault, S. T. et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet. 36, 283–287 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. S. & Luo, L. A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat. Protoc. 1, 2583–2589 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, H. W. et al. The TORC1-regulated CPA complex rewires an RNA processing network to drive autophagy and metabolic reprogramming. Cell. Metab. 27, 1040–1054.e8 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mariyappa, D. et al. A novel transposable element-based authentication protocol for Drosophila cell lines. G3 (Bethesda) 12, jkab403 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piper, M. D. et al. A holidic medium for Drosophila melanogaster. Nat. Methods 11, 100–105 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Field, C. M., Oegema, K., Zheng, Y., Mitchison, T. J. & Walczak, C. E. Purification of cytoskeletal proteins using peptide antibodies. Methods Enzymol. 298, 525–541 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciesielski, H. M. et al. Erebosis, a new cell death mechanism during homeostatic turnover of gut enterocytes. PLoS Biol. 20, e3001586 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, C., Finkel, S. E. & Tower, J. Conditional inhibition of autophagy genes in adult Drosophila impairs immunity without compromising longevity. Exp. Gerontol. 44, 228–235 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jao, C. Y., Roth, M., Welti, R. & Salic, A. Metabolic labeling and direct imaging of choline phospholipids in vivo. Proc. Natl Acad. Sci. USA 106, 15332–15337 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wilcockson, S. G. & Ashe, H. L. Drosophila ovarian germline stem cell cytocensor projections dynamically receive and attenuate BMP signaling. Dev. Cell 50, 296–312.e5 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shravage, B. V., Hill, J. H., Powers, C. M., Wu, L. & Baehrecke, E. H. Atg6 is required for multiple vesicle trafficking pathways and hematopoiesis in Drosophila. Development 140, 1321–1329 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z., Jaroszewski, L., Iyer, M., Sedova, M. & Godzik, A. FATCAT 2.0: towards a better understanding of the structural diversity of proteins. Nucleic Acids Res. 48, W60–W64 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, Y. et al. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinf. 12, 357 (2011).

    Article 

    Google Scholar
     

  • Breitkopf, S. B. et al. A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source. Metabolomics 13, 30 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, H., Yuan, M., Seitzer, P., Ludwigsen, S. & Asara, J. M. IsoSearch: an untargeted and unbiased metabolite and lipid isotopomer tracing strategy from HR-LC-MS/MS datasets. Methods Protoc. 3, 54 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinayagam, A. et al. Protein complex-based analysis framework for high-throughput data sets. Sci. Signal. 6, rs5 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neisch, A. L., Neufeld, T. P. & Hays, T. S. A STRIPAK complex mediates axonal transport of autophagosomes and dense core vesicles through PP2A regulation. J. Cell Biol. 216, 441–461 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Y. et al. Molecular Interaction Search Tool (MIST): an integrated resource for mining gene and protein interaction data. Nucleic Acids Res. 46, D567–D574 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hu, Y., Comjean, A., Perrimon, N. & Mohr, S. E. The Drosophila Gene Expression Tool (DGET) for expression analyses. BMC Bioinf. 18, 98 (2017).

    Article 

    Google Scholar
     

  • Hodgson, L., Shen, F. & Hahn, K. Biosensors for characterizing the dynamics of rho family GTPases in living cells. Curr. Protoc. Cell Biol. https://doi.org/10.1002/0471143030.cb1411s46 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link